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When we are in a “data rich” and “model poor” regime, and still want to 
approximate some model y=f(x); we can use machine learning to learn (or 
fit) an arbitrarily complex model (e.g. non-functional curves) of the data. 

When we are in a “data poor” and “model rich” regime e.g. Correlation 
function analysis of CMB maps, we should not use ML, rather rely on the 
predictive model [s].

Cosmology is firmly in the data “rich” regime:
1) SDSS has 100 million photometrically identified objects (stars/galaxies) 
and spectroscopic “truth” values, for e.g. redshift, and galaxy/stellar type.

and often in the “model-poor” regime:
   1) The exact mapping between galaxies observed in broad photometric 
bands and their redshift depends on stellar population physics, initial stellar 
mass functions, local environment, feedback from AGN/SNe, dust 
extinction,…
   2) Is an object found in photometric images a faint star that is far away, or 
a high redshift galaxy?

Use machine learning to approximate the mapping:
redshift = f(photometric properties of training sample)
f(photometric properties of 3 billion galaxies) => photometric redshift
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Training data science sample dataValidation

Inputs: Easily 
measured or 
derived
features: X

Input
Features, X

Unknown 
Target 
values

Targets: y
The quantity you 
want to learn.

� = ŷ
x�val

� y
x�val

Expected Error on prediction If the validation data is not representative 
of the science sample data, you can’t use 
machine learning (or any analysis!) to 
quantify how the predictions will behave 
on the science sample.

ytrain ⇡ ŷtrain = f(Xtrain)

Supervised Machine learning framework
labelled unlabelled
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Photometric redshifts: current challenges
Training/validation/[test] (i.e. all labelled data) not representative of the science 
sample data.

Almost impossible/very time expensive to get spec-z measurements of high 
redshift, faint galaxies.

Bonnett & DES SV 2015



Photometric redshifts: current challenges
Training/validation/[test] (i.e. all labelled data) not representative of the science 
sample data.

Almost impossible/very time expensive to get spec-z measurements of high 
redshift, faint galaxies.

This leads to incomplete labelled data (spec-z) in the input feature space
     A covariate shift could fix this…

Bonnett & DES SV 2015
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Confidence flag induced label biases

A bias       of >0.02 
means that photo-z is the dominant source of systematic error in Y1 DES weak lensing 
analysis.

The data with a confidence label (spec-z) is biased in the label direction.

We extracted 1-d spectra from simulations (known redshift), added noise. Ask DES/
OzDES observers to redshift the spectra and apply a confidence flag.

We compare the            
of the returned sample, 
with the             of the 
requested sample, as a 
function of the human 
assigned confidence 
flag.



Testing the effects of these sample selection biases
Using N-body simulations, populated with galaxies we explore if any current 
methods can fix this covariate shift, and label bias problem.
We generate “realistic” simulated spectroscopic training/validation data sets, with 
the view to measuring performance metrics on both the validation, and the science 
sample of interest.
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Testing the effects of these sample selection biases
Using N-body simulations, populated with galaxies we explore if any current 
methods can fix this covariate shift, and label bias problem.
We generate “realistic” simulated spectroscopic training/validation data sets, with 
the view to measuring performance metrics on both the validation, and the science 
sample of interest. “Science sample”

“Training & validation sample”
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Data culling: Remove science sample like data, that is not “close by” in KNN space 
to the “simulated” training/validation data.

We compare the metric values 
for the simulated validation 
data, and for the simulated 
science sample data as we 
increase the amount of culling
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Overcoming this problem in the Dark Energy Survey Y1

Pauline Veilzeuf

Method 1:
Replace spec-z targets with COSMOS 30-band photometric 
redshifts, which for DES purposes are as accurate as spec-z, but 
don’t have redshift selection effects.

This induces new, but tractable problems.
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Validating photo-z distribution in Y1 Dark Energy Survey

Photo-z predictions

Method 1:
Color-redshift mapping using 
30 band photo-z [cosmic variance]

Method 2: 
Estimation of dndz of a sample 
using the clustering technique 
(i.e, cross correlate with a sample 
of objects with known redshifts)  

Hoyle, Grün & DES et al 2017

and it’s uncertainty

 = <z_true> - <z-photz>
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Star Galaxy separation
Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological 
analysis e.g. DES SV analysis:
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Star Galaxy separation

In Y1 we face a similar problem as before 
labelled data is biased!

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological 
analysis e.g. DES SV analysis:

Moving towards higher order measurements of the predicted 
signal. e.g. does the number density of stars increase as one 
approaches the LMC / our Galaxy disk (Nacho Sevilla, BH, 
DES et al in prep)
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Convolutional Neural Networks
Galaxy Zoo: A massive program to train members of the public to visually inspect 1 
Million galaxies more than 50 times each
 

Willet et al 2013
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Convolutional Neural Networks
Galaxy Zoo: A massive program to train members of the public to visually inspect 1 
Million galaxies more than 50 times each
 

First application of
Deep ML with 2d-
CovNets in 
Astrophysics 
(Dieleman et al 2015)

Kaggle-contest: 
use ML to reproduce 
the classifications of 
humans.

Willet et al 2013

Could apply results to 
the 100’s million of 
galaxies and repeat for 
new surveys

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge


Extract centre of image 
=> the galaxy, 

rescaled to 45x45 pixels

Data augmentation 

Dropout/Max pooling

Combined many networks

37 GZ 
classes

http://benanne.github.io/2014/04/05/galaxy-zoo.html

CNNs for Galaxy Zoo

Dieleman et al 2015



CNNs for redshift estimates

*everything about biased label 
data is still a problem*

Inputs: galaxy image 
-> 
ImageNet architecture
->
Targets: spec-z
 

Compared performance with standard 
ML algorithms, and found parity.



Robert Lohmeyer Master thesis 2017
Supervisor BH

CNNs for Cosmic Microwave Background radiation

Is there information in the CMB that is 
not contained in Cls? E.g. Higher order 
moments, such as non-Gaussianities.



A random sample of CNN papers 
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Generative Adversarial Networks (GANs)
Generative:
Deep ML NN1: Input (random noise) vector -> output something / image

Adversarial:
Deep ML NN2: distinguish examples of training data examples from non-
training data, e.g. that obtained from NN1

Networks:
Deep ML Convolution Neural Networks. 

As training proceeds, NN1 generates more and more realistic “examples”     
from a random noise vector, and NN2 get better and better at 
distinguishing training data, from everything else, e.g that generated by 
NN1.

The problem with GANs:
Mode collapse. Difficult learning —> Wasserstein GAN.
https://arxiv.org/abs/1701.07875 

https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/
improved_wgan.py

https://arxiv.org/abs/1701.07875
https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/improved_wgan.py


Recent GAN applications
GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et 
al 2017 

GANs produce one realisation of what the input galaxy could look like. 
http://space.ml/supp/GalaxyGAN.html

http://space.ml/supp/GalaxyGAN.html
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Recent GAN applications

GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et 
al 2017 

GANs produce one realisation of what the input galaxy could look like. 
http://space.ml/supp/GalaxyGAN.html

Getting “labels” for the science sample data one cares about, is very challenging.

Again, move towards higher order measurements of the predicted signal:
    E.g. does gas predicted to exist in some part of the galaxy/disk give off radiation 
which can be observed in other bands?

http://space.ml/supp/GalaxyGAN.html


In essence we replace a very computationally expensive Nbody simulation code, like 
Gadget, with a Deep 3-d CovNet
—ongoing work with Julien Wolf

 Julien Wolf (USM) Master Student

GANs to generate a realisation of a Dark-Matter N-body 
simulation. 

If we want to measure 
covariance matrices 
for correlation functions to 
estimate BAOs, we have to call 
Gadget many 100’s - 1000s of 
times.



 Julien Wolf (USM) Master Student
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New Algorithms for ML / applied to astrophysics

Work in advanced progress with Suryarao Bethapudi. 

Random forests / Decision tree based methods  — with MINT (He et al 2013) feature 
selection.

Algorithm Novelty:
Grow a decision tree, but rather than randomly selecting from the input features (X), 
we can use both the “shape of X on the science sample” and the shape of X in the 
labelled data, as a guide to selecting which features the tree should choose. Mutual 
information defines the correlations (or “shapes”).

Applicable if we have many 1000’s of input features, which may be correlated, and the 
labelled data may have different input feature correlations from the unlabelled data.

Suryarao has working code on git-hub, and some very nice preliminary results on test 
data. We will move to real-world data soon.



 Accessing new / existing data

Some cosmological analysis is in a state of crisis:
Unrepresentative labelled data means we need new ideas, and potentially new 
algorithms.

   
   Higher order measurements of predictions is one way to proceed.

Cutting edge algorithms being implemented in astrophysics/cosmology 

New algorithms being developed for ML, and ML in astrophysics/cosmology. 

Deep ML: CNNs / GANs.

Cosmology is in the realm of “big data”; 100’s millions/ billions of galaxies 
are being observed: SDSS/DES/LSST/Euclid/LOFAR/SKA. Millions have 
target values.

Many possibilities of applying machine learning in new and interesting 
ways.

Summary/Conclusions



Photometric and spectroscopic redshifts

Markus Rau 2017 Phd Thesis

A spectrograph has a high wavelength resolution, allowing the ID of absorption/
emission lines, each with a “fingerprint”. Compare to the wavelength of these 
fingerprints measured in the lab, and lambda shift = redshift. — spec-z is expensive.

If instead we measure the spectrum in broader photometric filters, we convolve the 
true spectrum with the filter, and get one measurement per filter. One needs strong 
absorption features. — photo-z is cheap


