Machine learning In
Astronomy and
Cosmology

Ben Hoyle @7

University Observatory Munich, Germany .o i

rrestrische Ph_\.\'i]\

Max Plank for Extragalactic astrophysics

y

Collaborators: J. Wolf, R. Lohnmeyer, Suryarao Bethapudi
& Dark Energy Survey, Euclid OUPHZ

Remote talk: lIT Hyderabad, Kandi, India
& USM Munich Germany 23/11/2017



When/Why is Machine Learning suited to astrophysics/
cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation
function analysis of CMB maps, we should not use ML, rather rely on the

predictive model [s].
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When/Why is Machine Learning suited to astrophysics/

cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation
function analysis of CMB maps, we should not use ML, rather rely on the
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When/why is Machine Learning suited to astrophysics/
cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation
function analysis of CMB maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to
approximate some model y=f(x); we can use machine learning to learn (or
fit) an arbitrarily complex model (e.g. non-functional curves) of the data.



When/why is Machine Learning suited to astrophysics/
cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation
function analysis of CMB maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to
approximate some model y=f(x); we can use machine learning to learn (or
fit) an arbitrarily complex model (e.g. non-functional curves) of the data.

Cosmology is firmly in the data “rich” regime:
1) SDSS has 100 million photometrically identified objects (stars/galaxies)
and 3 million spectroscopic “truth” values, for e.g. redshift, and galaxy/
stellar type

2) DES has 300 million objects with photometry, and ~400k objects with
spectra

3) Gaia has >1 billion sources [stellar maps of the Milky Way]

3) Euclid with have 3 billion objects...



When/why is Machine Learning suited to astrophysics/
cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation
function analysis of CMB maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to
approximate some model y=f(x); we can use machine learning to learn (or
fit) an arbitrarily complex model (e.g. non-functional curves) of the data.

Cosmology is firmly in the data “rich” regime:
1) SDSS has 100 million photometrically identified objects (stars/galaxies)
and spectroscopic “truth” values, for e.g. redshift, and galaxy/stellar type.

and often in the “model-poor” regime:

1) The exact mapping between galaxies observed in broad photometric
bands and their redshift depends on stellar population physics, initial stellar
mass functions, local environment, feedback from AGN/SNe, dust
extinction,...

2) Is an object found in photometric images a faint star that is far away, or
a high redshift galaxy?

Use machine learning to approximate the mapping:
redshift = f(photometric properties of training sample)
f(photometric properties of 3 billion galaxies) => photometric redshift
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Why are photo-z’s important?
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Figure 5. Sample PDF estimated using ANNz and the High-
est Weight Element. The histogram shows the true spectroscopic
redshift distribution.
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Supervised Machine learning framework

labelled unlabelled

Training data science sample data

Input
Features, X

Inputs: Easily

measured or

derived

features: X Unknown
Targets: y Target
The quantity you values

want to learn.

Ytrain ~ ?)train — f(Xtrain) Qsc'i—s — f(XSC":—S)
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Supervised Machine learning framework

labelled unlabelled

Training data Validation science sample data

Input
Features, X

Inputs: Easily

measured or

derived

features: X Unknown
Targets: y Target
The quantity you values

want to learn.

Ytrain ~ @t’r‘ain — f(Xtra,z’n) ySC’i—S — f(XSC":—S)

If the validation data is not representative

of the science sample data, you can’t use

. machine learning (or any analysis!) to

A — Yr—val — Yr—val quantify how the predictions will behave
on the science sample.

Expected Error on prediction
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Photometric redshifts: current challenges

Training/validation/[test] (i.e. all labelled data) not representative of the science

sample data.
Almost impossible/very time expensive to get spec-z measurements of high

redshift, faint galaxies.
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Photometric redshifts: current challenges

Training/validation/[test] (i.e. all labelled data) not representative of the science

sample data.
Almost impossible/very time expensive to get spec-z measurements of high

redshift, faint galaxies.
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This leads to incomplete labelled data (spec-z) in the input feature space
A covariate shift could fix this...



Confidence flag induced label biases

The data with a confidence label (spec-z) is biased in the label direction.

We extracted 1-d spectra from simulations (known redshift), added noise. Ask DES/
OzDES observers to redshift the spectra and apply a confidence flag.
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Confidence flag induced label biases

The data with a confidence label (spec-z) is biased in the label direction.

We extracted 1-d spectra from simulations (known redshift), added noise. Ask DES/
OzDES observers to redshift the spectra and apply a confidence flag.

We compare the < zrcturns > |Fiag

of the returned sample,
with the < z.: > of the
requested sample, as a
function of the human —

N
assigned confidence ;<
flag. NS

o N
£ ~
=
=
|z
A&
3
V

[
4

A bias A\ ,of >0.02

Leads: Will Hartley, Chihway Chang

0.00 -

—0.02 A

—0.04 -

—
—
=
—
p—
e
1

—0.08 A

—0.10 A

—0.12 -

0.2< z <0.43

0.43< z <0.63
e 0.63<2<09
e (09<z<l3

raw

welghted

1.0

1 1 I I 1
2.5

Flag limit

Y1

SV

means that photo-z is the dominant source of systematic error in Y1 DES weak lensing

analysis.



Testing the effects of these sample selection biases

Using N-body simulations, populated with galaxies we explore if any current
methods can fix this covariate shift, and label bias problem.

We generate “realistic” simulated spectroscopic training/validation data sets, with
the view to measuring performance metrics on both the validation, and the science
sample of interest.
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Testing the effects of these sample selection biases

Using N-body simulations, populated with galaxies we explore if any current
methods can fix this covariate shift, and label bias problem.

We generate “realistic” simulated spectroscopic training/validation data sets, with
the view to measuring performance metrics on both the validation, and the science
sample of interest.
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Common approaches to sample selection bias

Lima et al: Reweight (using KNN) data so the input features (color-magnitude)
distribution of the “simulated” validation data is that of “simulated” science sample.
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Common approaches to sample selection bias

Lima et al: Reweight (using KNN) data so the input features (color-magnitude)
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Common approaches to sample selection bias

Lima et al: Reweight (using KNN) data so the input features (color-magnitude)

distribution of the “simulated” validation data is that of “simulated” science sample.
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Common approaches to sample selection bias

Data culling: Remove science sample like data, that is not “close by” in KNN space
to the “simulated” training/validation data.
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Overcoming this problem in the Dark Energy Survey Y1

Method 1:
Replace spec-z targets with COSMOS 30-band photometric
redshifts, which for DES purposes are as accurate as spec-z, but
don’t have redshift selection effects.

This induces new, but tractable problems.
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Overcoming this problem in the Dark Energy Survey Y1

Method 1:
Replace spec-z targets with COSMOS 30-band photometric

redshifts, which for DES purposes are as accurate as spec-z, but
don’t have redshift selection effects.
This induces new, but tractable problems.

Method 2:
The clustering redshift approach:
only need complete samples across the sky, not

“representative”.
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don’t have redshift selection effects.

Overcoming this problem in the Dark Energy Survey Y1

Method 1:
Replace spec-z targets with COSMOS 30-band photometric
redshifts, which for DES purposes are as accurate as spec-z, but

This induces new, but tractable problems.

Method 2:

The clustering redshift approach:
only need complete samples across the sky, not
“representative”.
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Validating photo-z distribution in Y1 Dark Energy Survey

Value

Bin 1 Bin 2 Bin 3 Bin 4

PZ

z" % range

COSMOS final Az*, tomographic uncertainty

WZ final Az*
Combined final Az*

0.20-0.43 0.43-0.63 0.63-0.90 0.90-1.30

+0.001 +0.020 —0.014 +=0.021 +0.008 £ 0.018 —0.057 & 0.022
+0.008 +0.026 —0.031 +=0.017 —0.010 40.014
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- Photo-z predictions

\ Method 1:

Color-redshift mapping using
30 band photo-z [cosmic variance]

Method 2:

Estimation of dndz of a sample
using the clustering technique
(i.e, cross correlate with a sample
of objects with known redshifts)
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Star Galaxy separation

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological
analysis e.g. DES SV analysis:

purity at 96% completeness, for galaxies

w() o :
O 2 B T T T T ] - 9 e 5
' 5/ — Ssystematic error A[UJ()] S SEL I SR - ;
0.1 :/‘_'1\ | | — statistical error ofwy] w | /7 ' O hg ST
0.0 £t f,=0.019] >y L 5
0‘1 £ [, =0. i threshold on f,
e g A[u’o] SO’[’LU()] 8 h ”
—O 2 C | I l | N -
0 1 2 3 z .,
Fraction of Stellar f le—2 Soumagnac et al 2015 3 @©
contamination S
o
e 0]
0 -9 multi_class
new method not including spread_model
~-0-- gpread_model (i band) :
Q | class_star (i band) | |
I I I I |
19 20 21 22 23

magnitude



Star Galaxy separation

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological
analysis e.g. DES SV analysis:

purity at 96% completeness, for galaxies

T IwO T T S - : :
0.2 5/ 1 | — systematic error Alwy] : oo G o ga® g el
0'1:/_1_\ | | — statistical error ofuw] o |/ o ) o RN
(())(])- :Z: fs —=0.0197 i threshold on fs 7
Iy Altuo] <ofu i
O 1 2 3 4 2 5
Fraction of Stellar ¥ le—2 Soumagnac et al 2015 :3; ©
contamination S
8 o
0 < multi_class
new method not including spread_model
. = ~-0-- spread_model (i band) '
In Y1 we face a similar problem as before o | o class_star (i band) | |
labelled data is biased! 19 20 21 22 23

magnitude



Star Galaxy separation

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological
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Moving towards higher order measurements of the predicted
signal. e.g. does the number density of stars increase as one
approaches the LMC / our Galaxy disk (Nacho Sevilla, BH,
DES et al in prep)
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Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a dnsk viewed edge-on?

Is there a sign of a bar feature through
Does the galaxy have a bulge at its centre? the centre of the galaxy?

If so, what shape?

»y | ¥ |

| Is there any sign of a spiral
arm pattern?

'

How rounded is it?

sle=

v

Is there anything odd?

How tightly wound do the spiral arms appear?
Is the odd feature a ring, or is the @ 6 6
galaxy disturbed or irregular?
Y \ v
O How many spiral arms are there? How prominent is the central bulge,
compared to the rest of the galaxy?

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are (respectively) one, two
or three steps below branching peints in the decision tree. 'I‘ab]e@ describes the responses that correspond to the icons in this diagram.

Willet et al 2013




Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a disk viewed edge-on?

Kaggle-contest: I
use ML to reproduce How rounded is it?
the classifications of
humans.

Is there a sign of a bar feature through
1 Does the galaxy have a bulge at its centre? the centre of the galaxy?

If so, what shape?

Is there anything odd?

»y | ¥ |

| Is there any sign of a spiral
arm pattern?

How tightly wound do the spiral arms appear?
Is the odd feature a ring, or is the @ 6 6
galaxy disturbed or irregular?
Y \ v
O How many spiral arms are there? How prominent is the central bulge,
compared to the rest of the galaxy?

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are {respectively) one, two
or three steps below branching points in the decision tree. 'l‘ab]c@ describes the responses that correspond to the icons in this diagram.

https:/www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge Willet et al 2013
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Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?
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Is there anything odd? - & ~
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L
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galaxies and repeat for
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new surveys
Is the odd feature a ring, or is the @ 9 6
galaxy disturbed or irregular?

/O How many spir.x arms are there? How prominent is the central bulge,
FirSt application Of | | compared to the rest of the galaxy?
Deep ML with 2d- -
CovNets in .

Astrophysics

(Dieleman et al 2015) n

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are {respectively) one, two
or three steps below branching peints in the decision tree. 'I‘ab]c@ describes the responses that correspond to the icons in this diagram.

https:/www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge Willet et al 2013

Is there any sign of a spiral
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CNNs for Galaxy Zoo

Extract centre of image

=> the galaxy,
rescaled to 45x45 pixels
Data augmentation

Dropout/Max pooling

Combined many networks

45 \
40 S Dieleman et al 2015
16
N 6
{ Btk S 4
6\~ 5 < . Max classes
6 128 pooling
16 Ma’l‘_ 128 = 2x2
pooling 3 3
Max Bs = 8x8 T —
40
45 pooling T —
| 32 =20x20 v — 37
3 (RGB)
l | —
X16 2048 2048

maxout(2) maxout(2)

http://benanne.github.io/2014/04/05/galaxy-zoo.html



. arXiv:1504.07255 [pdf, other]

CNNs for redshift estimates

Measuring photometric redshifts using galaxy images and Deep Neural Networks

Ben Hoyle

Inputs: galaxy image

->

ImageNet architecture

->

Targets: spec-z

*everything about biased label

data is still a problem*

Compared performance with standard

T,
A

ML algorithms, and found parity.

21 <z< 2l 20 <2< 23| 23 < 2 < Zjy1 |Zn—1 < 2 < 2y

MLA H 068 095 IA /(1 + zspec)l > 0.15
DNNs 0.00 0.030 | 0.10 1.71%
AdaBoost | —0.001 | 0.030 | 0.10 1.56%

A = “spec — <“predict



CNNs for Cosmic Microwave Background radiation
Measuring Cosmological Parameters

Is there information in the CMB that is
not contained in Cls? E.g. Higher order
moments, such as non-Gaussianities.

Power Spectrum
Cosmology

{'A_s': 2.3e-09,
'h': 0.7,
'n_s': 0.95,
'omega_b': 0.02,
'omega_cdm': 0.25,
"output':

"tCl'}

from Simulated CMB Images with

Convolutional Neural Networks

2D CNN Configuration

1D CNN Configuration

input (128 x 128)

Conv2D (3 x 3) - 16
Conv2D (3 x 3) - 16

input (16384)

maxpool (2 x 2)

Conv2D (3 x 3) - 32
Conv2D (3 x 3) - 32

ConvlD (4, Stride 4) - 128

ConvlD (4, Stride4) - 128

maxpool (2 x 2)

maxpool (4)

Conv2D (3 x 3) - 64

2D Image Conv2D (3 x 3) - 64 ConvlD (4, Stride 4) - 256
e A maxpool (2 x 2)
Bisaran Conv2D (3 x 3) - 128 Conv1D (4, Stride 4) - 256
i SRR Conv2D (3 x 3) - 128
Ry :'* maxpool (2 x 2) maxpool (4)
i SRSy FC - 256 FC - 256
L FC - 128 FC - 128
N FC-1/FC-2 FC-1/FC-2
e —
AA;, | AQcpum | AASTE
PolSpice correlation function || 1.45-1071% | 0.025 3.3-107H1
10 ~11
ig SEE 1'2? : 13—10 g'gzzz 1 '_10 Robert Lohmeyer Master thesis 2017




A random sample of CNN papers

Spectral classification using convolutional neural networks
https://arxiv.org» cs v
by P Hala - 2014 - Cited by 2 - Related articles

Dec 29, 2014 - This thesis is about training a convolutional neural network (ConvNet) to ... neural
networks and deep learning methods in astrophysics.

"W Fast Automated Analysis of Strong Gravitational Lenses with
Convolutional Neural Networks

Yashar D. Hezaveh, Laurence Perreault Levasseur, Philip J. Marshall

-arXiv:1704.02744 [pdf, other]

Finding strong lenses in CFHTLS using convolutional neural networks

Colin Jacobs, Karl Glazebrook, Thomas Collett, Anupreeta More, Christopher McCarthy
Comments: 16 pages, 8 figures. Accepted by MNRAS

Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); Astrophysics of Galaxies (astro-j

A Convolutional Neural Network For Cosmic String Detection in CMB
Temperature Maps

Razvan Ciuca, Oscar F. Hernandez, Michael Wolman
(Submitted on 29 Aug 2017)
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Generative Adversarial Networks (GANSs)

Generative:
Deep ML NN1: Input (random noise) vector -> output something / image

Adversarial:
Deep ML NN2: distinguish examples of training data examples from non-
training data, e.g. that obtained from NN1

Networks:
Deep ML Convolution Neural Networks.

As training proceeds, NN1 generates more and more realistic “examples”
from a random noise vector, and NN2 get better and better at
distinguishing training data, from everything else, e.g that generated by
NN1.

The problem with GANSs:
Mode collapse. Difficult learning —> Wasserstein GAN.
https:/arxiv.org/abs/1701.07875

https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/
improved wgan.py



https://arxiv.org/abs/1701.07875
https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/improved_wgan.py

Recent GAN applications

GANSs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et
al 2017

GANs produce one realisation of what the input galaxy could look like.
http:/space.ml/supp/GalaxyGAN.html

Data Prep. Training of GAN

Original Image Original Image

. . -.D'§9£I_ml_n?mr__

Artn‘lua
Degrading

(3bew| papeiBa( abew| pasanoday

10 (36ew| papeJ%a[] ‘abew| ]eu!ﬁuo}

Degraded Image Generator Recovered Image

Figure 1. Schematic illustration of the training process of our
method. The input is a set of original images. From these we
automatically generate degraded images, and train a Generative
Adversarial Network. In the testing phase, only the generator will
be used to recover images.


http://space.ml/supp/GalaxyGAN.html

original degraded GAN recovered deconvolved

original degraded GAN recovered deconvolved

PSF=2.5", 100

Figure 2. We show the results obtained for one example galaxy. From left to right: the original SDSS image, the degraded image with a
worse PSF and higher noise level (indicating the PSF and noise level used), the image as recovered by the GAN, and for comparison, the
result of a deconvolution. This figure visually illustrates the GAN’s ability to recover features which conventional deconvolutions cannot.

Schawinski et al 2017
PeE=2 5" 1Bg . ®



Recent GAN applications

GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et
al 2017

GANSs produce one realisation of what the input galaxy could look like.
http://space.ml/supp/GalaxyGAN.html

Getting “labels” for the science sample data one cares about, is very challenging.

Again, move towards higher order measurements of the predicted signal:
E.g. does gas predicted to exist in some part of the galaxy/disk give off radiation
which can be observed in other bands?


http://space.ml/supp/GalaxyGAN.html

GANSs to generate a realisation of a Dark-Matter N-body
simulation.

In essence we replace a very computationally expensive Nbody simulation code, like

Gadget, with a Deep 3-d CovNet
—ongoing work with Julien Wolf

120 ‘ ”?’%

If we want to measure
covariance matrices

for correlation functions to
estimate BAOs, we have to call
Gadget many 100’s - 1000s of
times.

Julien Wolf (USM) Master Student



Separation scale (voxel)
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New Algorithms for ML / applied to astrophysics

Random forests / Decision tree based methods — with MINT (He et al 2013) feature
selection.

Algorithm Novelty:
Grow a decision tree, but rather than randomly selecting from the input features (X),

we can use both the “shape of X on the science sample” and the shape of X in the
labelled data, as a guide to selecting which features the tree should choose. Mutual

information defines the correlations (or “shapes”).

Applicable if we have many 1000’s of input features, which may be correlated, and the
labelled data may have different input feature correlations from the unilabelled data.

Suryarao has working code on git-hub, and some very nice preliminary results on test
data. We will move to real-world data soon.

Work in advanced progress with Suryarao Bethapudi.



Summary/Conclusions

Accessing new / existing data
Cosmology is in the realm of “big data”; 100’s millions/ billions of galaxies

are being observed: SDSS/DES/LSST/Euclid/LOFAR/SKA. Millions have
target values.

Many possibilities of applying machine learning in new and interesting
ways.

Some cosmological analysis is in a state of crisis:
Unrepresentative labelled data means we need new ideas, and potentially new

algorithms.

Higher order measurements of predictions is one way to proceed.

Cutting edge algorithms being implemented in astrophysics/cosmology
Deep ML: CNNs / GANSs.

New algorithms being developed for ML, and ML in astrophysics/cosmology.



Photometric and spectroscopic redshifts

A spectrograph has a high wavelength resolution, allowing the ID of absorption/
emission lines, each with a “fingerprint”. Compare to the wavelength of these
fingerprints measured in the lab, and lambda shift = redshift. — spec-z is expensive.

If iInstead we measure the spectrum in broader photometric filters, we convolve the
true spectrum with the filter, and get one measurement per filter. One needs strong
absorption features. — photo-z is cheap
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