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Higgs particle @ ATLAS and CMS
• VH(bb) allows to measure Higgs coupling to beauty

• Deviation from the SM still possible

• Need of precise fully differential predictions
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Higgs particle @ ATLAS and CMS
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• VH(bb) allows to measure Higgs coupling to beauty

• Deviation from the SM still possible

• Need of precise fully differential predictions
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Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

Associated VH production
and H → bb̄ decay >>>> ..

>>>>

h1(p1) + h2(p2) → V + H + X → ℓ1ℓ2 + bb̄ + X

where V = Z0,W± and ℓ1ℓ2 = ℓ+ℓ−, ℓνℓ

..
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(with p ≥ 1): Non perturbative power-corrections (higher-twist).

fa/h(x , µ
2
F ): Non perturbative universal parton densities (PDFs), µF ∼ Q.

d σ̂ab: Hard scattering cross section. calculable with a perturbative expansion in αS (Q)

d σ̂ab = d σ̂
(0)
ab + d σ̂

(1)
ab (µ2

R) + d σ̂
(2)
ab (µ2

R ) +O(α3
S ) .

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x , µ
2
F )
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} 1 or 2 b jets

High pt lepton

High pt lepton (V=Z)
or large missing energy (V=W)

• Large sources of backgrounds from V+bb, V+b, V+jets, tt, VV

• For boosted events S/B ratio improve considerably and allows detection at the LHC       

• Search strategy for VH production important to asses the relevance of the corrections 
to the decay process

VH(bb) signal phenomenology

Rbb & 2
mH

pT
(pT � mH)

[Butterworth, Davison, Rubin, Salam 2008]
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Figure 4. The fitted values of the Higgs boson signal strength parameter µ for mH = 125GeV
for the 0-, 1- and 2-lepton channels and their combination. The individual µ values for the lepton
channels are obtained from a simultaneous fit with the signal strength parameter for each of the
lepton channels floating independently. The compatibility of the individual signal strengths is 10%.

Dataset
p0 Significance

Exp. Obs. Exp. Obs.

0-lepton 4.2% 30% 1.7 0.5

1-lepton 3.5% 1.1% 1.8 2.3

2-lepton 3.1% 0.019% 1.9 3.6

Combined 0.12% 0.019% 3.0 3.5

Table 14. The expected and observed p0 and significance values (in standard deviations) for the
individual lepton channels and their combination using the 13 TeV dataset. The expected values
are evaluated assuming a SM Higgs boson with a mass of 125GeV.

background yields, respectively. Details of the fitted values of the signal and of the various

background components in the four bins with the highest S/B ratio in figure 6 are provided

in table 15.

9.2 Results of the dijet-mass analysis

The distributions of mbb in the dijet-mass analysis are shown in figure 7 for the 2-jet

category and the most sensitive analysis regions with pVT > 200GeV for the 0-, 1- and

2-lepton channels separately. The mbb distribution for all channels and regions summed,

weighted by their respective value of the ratio of fitted Higgs boson signal and background

yields, and after subtraction of all backgrounds except for the (W/Z)Z diboson processes,

is shown in figure 8. The data and the sum of expected signal and backgrounds are found

to be in good agreement.
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Figure 5. The fitted values of the Higgs boson signal strength parameter µ for mH = 125GeV
for the WH and ZH processes and their combination. The individual µ values for the (W/Z)H
processes are obtained from a simultaneous fit with the signal strength for each of the WH and
ZH processes floating independently. The compatibility of the individual signal strengths is 75%.

Process Bin 11 Bin 12 Bin 13 Bin 14

Data 274 156 34 4

Signal (fit) 32.4 25.0 11.1 1.1

Total Background 238.3 113.7 27.3 1.5

Z + ll 0.2 0.1 < 0.1 < 0.1

Z + cl 0.7 0.4 < 0.1 < 0.1

Z + HF 86.1 51.3 10.5 1.5

W + ll 0.20 0.1 < 0.1 —

W + cl 1.6 0.2 < 0.1 —

W + HF 58.9 24.5 6.9 —

Single top quark 19.2 7.6 2.9 —

tt̄ 61.3 25.7 6.2 —

Diboson 4.7 1.7 0.4 < 0.1

Multi-jet e sub-ch. 0.1 — – —

Multi-jet µ sub-ch. 5.2 2.0 < 0.1 —

Table 15. The numbers of fitted signal and background events and the observed numbers of events
in the four highest S/B bins of figure 6. An entry of “–” indicates that a specific background
component is negligible in a certain bin, or that no simulated events are left after the analysis
selection.
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Evidence for the              decay with the ATLAS detector H ! bb̄

JHEP12(2017)024

Selection 0-lepton 1-lepton 2-lepton

e sub-channel µ sub-channel

Trigger Emiss
T Single lepton Emiss

T Single lepton

Leptons 0 loose leptons 1 tight electron 1 medium muon 2 loose leptons with pT > 7GeV

with pT > 7GeV pT > 27GeV pT > 25GeV ≥ 1 lepton with pT > 27GeV

Emiss
T > 150 GeV > 30 GeV — —

mℓℓ — — 81 GeV < mℓℓ < 101 GeV

Jets Exactly 2 or 3 jets Exactly 2 or ≥ 3 jets

Jet pT > 20 GeV

b-jets Exactly 2 b-tagged jets

Leading b-tagged jet pT > 45 GeV

HT > 120 (2 jets), >150 GeV (3 jets) — —

min[∆φ(Emiss
T , jets)] > 20◦ (2 jets), > 30◦ (3 jets) — —

∆φ(Emiss
T , bb) > 120◦ — —

∆φ(b1, b2) < 140◦ — —

∆φ(Emiss
T ,Emiss

T,trk) < 90◦ — —

pVT regions > 150GeV (75, 150]GeV, > 150GeV

Signal regions ! mbb ≥ 75GeV or mtop ≤ 225GeV Same-flavour leptons

Opposite-sign charge (µµ sub-channel)

Control regions — mbb < 75GeV and mtop > 225GeV Different-flavour leptons

Table 2. Summary of the event selection in the 0-, 1- and 2-lepton channels.

–
11

–

JHEP12(2017)024

Signal regions
0-lepton 1-lepton 2-lepton

pVT > 150GeV, 2-b-tag pVT >150GeV, 2-b-tag
75GeV < pVT <150GeV,

2-b-tag
pVT > 150GeV, 2-b-tag

Sample 2-jet 3-jet 2-jet 3-jet 2-jet ≥3-jet 2-jet ≥3-jet

Z + ll 9.0± 5.1 15.5± 8.1 < 1 — 9.2± 5.4 35± 19 1.9± 1.1 16.4± 9.3

Z + cl 21.4± 7.7 42± 14 2.2± 0.1 4.2± 0.1 25.3± 9.5 105± 39 5.3± 1.9 46± 17

Z + HF 2198± 84 3270± 170 86.5± 6.1 186± 13 3449± 79 8270± 150 651± 20 3052± 66

W + ll 9.8± 5.6 17.9± 9.9 22± 10 47± 22 < 1 < 1 < 1 < 1

W + cl 19.9± 8.8 41± 18 70± 27 138± 53 < 1 < 1 < 1 < 1

W + HF 460± 51 1120± 120 1280± 160 3140± 420 3.0± 0.4 5.9± 0.7 < 1 2.2± 0.2

Single top quark 145± 22 536± 98 830± 120 3700± 670 53± 16 134± 46 5.9± 1.9 30± 10

tt̄ 463± 42 3390± 200 2650± 170 20640± 680 1453± 46 4904± 91 49.6± 2.9 430± 22

Diboson 116± 26 119± 36 79± 23 135± 47 73± 19 149± 32 24.4± 6.2 87± 19

Multi-jet e sub-ch. — — 102± 66 27± 68 — — — —

Multi-jet µ sub-ch. — — 133± 99 90± 130 — — — —

Total bkg. 3443± 57 8560± 91 5255± 80 28110± 170 5065± 66 13600± 110 738± 19 3664± 56

Signal (fit) 58± 17 60± 19 63± 19 65± 21 25.6± 7.8 46± 15 13.6± 4.1 35± 11

Data 3520 8634 5307 28168 5113 13640 724 3708

Table 13. The fitted Higgs boson signal and background yields for each signal region category in each channel after the full selection of the
multivariate analysis. The yields are normalised by the results of the global likelihood fit. All systematic uncertainties are included in the indicated
uncertainties. An entry of “–” indicates that a specific background component is negligible in a certain region, or that no simulated events are left
after the analysis selection.

–
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CMS: Evidence for the Higgs boson decay to a bottom quark-antiquark pair

5.1 Signal regions 7

Table 1: Selection criteria that define the signal region. Entries marked with “—” indicate
that the variable is not used in the given channel. Where selections differ for different pT(V)
regions, there are comma separated entries of thresholds or square brackets with a range that
indicate each region’s selection as defined in the first row of the table. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where selection
differs between lepton flavors, the selection is listed as (muon, electron).

Variable 0-lepton 1-lepton 2-lepton
pT(V) >170 >100 [50, 150],>150
M(``) — — [75, 105]
p`T — (> 25,> 30) >20
pT(j1) >60 >25 >20
pT(j2) >35 >25 >20
pT(jj) >120 >100 —
M(jj) [60, 160] [90, 150] [90, 150]
Df(V, jj) >2.0 >2.5 >2.5
CMVAmax >CMVAT >CMVAT >CMVAL
CMVAmin >CMVAL >CMVAL >CMVAL
Naj <2 <2 —
Na` =0 =0 —
pmiss

T >170 — —
Df(~pmiss

T , j) >0.5 — —
Df(~pmiss

T ,~pmiss
T (trk)) <0.5 — —

Df(~pmiss
T , `) — <2.0 —

Lepton isolation — <0.06 (< 0.25,< 0.15)
Event BDT > �0.8 >0.3 > �0.8

5.1.1 0-lepton channel

This channel targets mainly Z(nn)H events in which the pmiss
T is interpreted as the transverse

momentum of the Z boson in the Z ! nn decay. In order to overcome large QCD multijet
backgrounds, a relatively high threshold of pmiss

T > 170 GeV is required. The QCD multijet
background is further reduced to negligible levels in this channel when requiring that the pmiss

T
does not originate from the direction of (mismeasured) jets. To that end, if there is a jet with
|h| < 2.5 and pT > 30 GeV, whose azimuthal angle is within 0.5 radians of the pmiss

T direction,
the event is rejected. The rejection of multijet events with pmiss

T produced by mismeasured jets
is aided by using a different missing transverse momentum reconstruction, denoted pmiss

T (trk),
obtained by considering only charged-particle tracks with pT > 0.5 GeV and |h| < 2.5. For
an event to be accepted, it is required that pmiss

T (trk) and pmiss
T be aligned in azimuth within

0.5 radians. To reduce background events from tt and WZ production channels, events with
any additional isolated leptons with pT > 20 GeV are rejected. The number of these additional
leptons is denoted by Na`.

5.1.2 1-lepton channel

This channel targets mainly W(`n)H events in which candidate W ! `n decays are identi-
fied by the presence of one isolated lepton as well as missing transverse momentum, which
is implicitly required in the pT(V) selection criteria mentioned below, where pT(V) is calcu-
lated from the vectorial sum of ~pmiss

T and the lepton ~pT. Muons (electrons) are required to have
pT > 25 (30)GeV. It is also required that the azimuthal angle between the pmiss

T direction and
the lepton be less than 2.0 radians. The lepton isolation for either flavor of lepton is required to

18 7 Results

Table 8: The total numbers of events in each channel, for the 20% most sensitive region of the
event BDT output distribution is shown for all background processes, for the SM Higgs boson
VH signal, and for data. The yields from simulated samples are computed with adjustments to
the shapes and normalizations of the BDT distributions given by the signal extraction fit. The
signal-to-background ratio (S/B) is also shown.

Process 0-lepton 1-lepton 2-lepton low-pT(V) 2-lepton high-pT(V)
Vbb 216.8 102.5 617.5 113.9
Vb 31.8 20.0 141.1 17.2
V+udscg 10.2 9.8 58.4 4.1
tt 34.7 98.0 157.7 3.2
Single top quark 11.8 44.6 2.3 0.0
VV(udscg) 0.5 1.5 6.6 0.5
VZ(bb) 9.9 6.9 22.9 3.8

Total background 315.7 283.3 1006.5 142.7
VH 38.3 33.5 33.7 22.1
Data 334 320 1030 179

S/B 0.12 0.12 0.033 0.15

flavor for the 2-lepton channels (each corresponding to one of two pT(V) regions). Figure 4
shows the seven BDT distributions after they have been adjusted by the fit. Figure 5 combines
the BDT output values of all channels where the events are gathered in bins of similar expected
signal-to-background ratio, as given by the value of the output of their corresponding BDT
discriminant. The observed excess of events in the bins with the largest signal-to-background
ratio is consistent with what is expected from the production of the SM Higgs boson. To detail
this excess, the total numbers of events for all backgrounds, for the SM Higgs boson signal, and
for data are shown in Table 8 for each channel, for the 20% most sensitive region of the BDT
output distribution. The simulation yields are adjusted using the results of fit.

The significance of the observed excess of events in the signal extraction fit is computed using
the standard LHC profile likelihood asymptotic approximation [97–100]. For mH = 125.09 GeV,
it corresponds to a local significance of 3.3 standard deviations away from the background-
only hypothesis. This excess is consistent with the SM prediction for Higgs boson production
with signal strength µ = 1.19+0.21

�0.20 (stat)+0.34
�0.32 (syst). The expected significance is 2.8 standard

deviations with µ = 1.0. Together with this result, Table 9 also lists the expected and observed
significances for the 0-lepton channel, for the 1-lepton channels combined, and for the 2-lepton
channels combined.

Table 9: The expected and observed significances for VH production with H ! bb are shown,
for mH = 125.09 GeV, for each channel fit individually as well as for the combination of all
three channels.

Channels Significance Significance
expected observed

0-lepton 1.5 0.0
1-lepton 1.5 3.2
2-lepton 1.8 3.1

Combined 2.8 3.3

The observed signal strength µ is shown in the lower portion of Fig. 6 for 0-, 1- and 2-lepton

7.1 Extraction of VZ with Z ! bb 21
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Figure 6: The best fit value of the signal strength µ, at mH = 125.09 GeV, is shown in black
with a green uncertainty band. Also shown are the results of a separate fit where each channel
is assigned an independent signal strength parameter. Above the dashed line are the WH and
ZH signal strengths derived from a fit where each production mode is assigned an independent
signal strength parameter.
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Figure 7: Weighted dijet invariant mass distribution for events in all channels combined.
Shown are data and the VH and VZ processes with all other background processes subtracted.
Weights are derived from the event BDT output distribution as described in the text.
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treated as background. The only modification made is the requirement that the signal region
M(jj) be in the [60, 160]GeV range.

The results from the combined fit for all channels of the control and signal region distribu-
tions, as defined in Sections 5.1 and 5.2, are summarized in Table 10 for the same

p
s = 13 TeV

data used in the VH search described above. The observed excess of events for the combined
WZ and ZZ processes has a significance of 5.0 standard deviations from the background-
only event yield expectation. The corresponding signal strength, relative to the prediction
of the MADGRAPH5 aMC@NLO generator at NLO mentioned in Section 2, is measured to be
µVV = 1.02+0.22

�0.23.

Table 10: Validation results for VZ production with Z ! bb. Expected and observed signifi-
cances, and the observed signal strengths. Significance values are given in numbers of standard
deviations.

Channels Significance Significance Signal strength
expected observed observed

0-lepton 3.1 2.0 0.57 ± 0.32
1-lepton 2.6 3.7 1.67 ± 0.47
2-lepton 3.2 4.5 1.33 ± 0.34

Combined 4.9 5.0 1.02 ± 0.22

Figure 8 shows the combined event BDT output distribution for all channels, with the content
of each bin, for each channel, weighted by the expected signal-to-background ratio. The excess
of events in data, over background, is shown to be compatible with the yield expectation from
VZ production with Z ! bb.
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Figure 8: Combination of all channels in the VZ search, with Z ! bb into a single event BDT
distribution. Events are sorted in bins of similar expected signal-to-background ratio, as given
by the value of the output of their corresponding BDT discriminant. The bottom inset shows
the ratio of the data to the predicted background, with a red line overlaying the expected SM
contribution from VZ with Z ! bb.

18 7 Results

Table 8: The total numbers of events in each channel, for the 20% most sensitive region of the
event BDT output distribution is shown for all background processes, for the SM Higgs boson
VH signal, and for data. The yields from simulated samples are computed with adjustments to
the shapes and normalizations of the BDT distributions given by the signal extraction fit. The
signal-to-background ratio (S/B) is also shown.

Process 0-lepton 1-lepton 2-lepton low-pT(V) 2-lepton high-pT(V)
Vbb 216.8 102.5 617.5 113.9
Vb 31.8 20.0 141.1 17.2
V+udscg 10.2 9.8 58.4 4.1
tt 34.7 98.0 157.7 3.2
Single top quark 11.8 44.6 2.3 0.0
VV(udscg) 0.5 1.5 6.6 0.5
VZ(bb) 9.9 6.9 22.9 3.8

Total background 315.7 283.3 1006.5 142.7
VH 38.3 33.5 33.7 22.1
Data 334 320 1030 179

S/B 0.12 0.12 0.033 0.15

flavor for the 2-lepton channels (each corresponding to one of two pT(V) regions). Figure 4
shows the seven BDT distributions after they have been adjusted by the fit. Figure 5 combines
the BDT output values of all channels where the events are gathered in bins of similar expected
signal-to-background ratio, as given by the value of the output of their corresponding BDT
discriminant. The observed excess of events in the bins with the largest signal-to-background
ratio is consistent with what is expected from the production of the SM Higgs boson. To detail
this excess, the total numbers of events for all backgrounds, for the SM Higgs boson signal, and
for data are shown in Table 8 for each channel, for the 20% most sensitive region of the BDT
output distribution. The simulation yields are adjusted using the results of fit.

The significance of the observed excess of events in the signal extraction fit is computed using
the standard LHC profile likelihood asymptotic approximation [97–100]. For mH = 125.09 GeV,
it corresponds to a local significance of 3.3 standard deviations away from the background-
only hypothesis. This excess is consistent with the SM prediction for Higgs boson production
with signal strength µ = 1.19+0.21

�0.20 (stat)+0.34
�0.32 (syst). The expected significance is 2.8 standard

deviations with µ = 1.0. Together with this result, Table 9 also lists the expected and observed
significances for the 0-lepton channel, for the 1-lepton channels combined, and for the 2-lepton
channels combined.

Table 9: The expected and observed significances for VH production with H ! bb are shown,
for mH = 125.09 GeV, for each channel fit individually as well as for the combination of all
three channels.

Channels Significance Significance
expected observed

0-lepton 1.5 0.0
1-lepton 1.5 3.2
2-lepton 1.8 3.1

Combined 2.8 3.3

The observed signal strength µ is shown in the lower portion of Fig. 6 for 0-, 1- and 2-lepton

V H(H ! bb̄)

V Z(Z ! bb̄)
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VH higher order Corrections (QCD)

QCD corrections (inclusive)
Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

Associated VH production
and H → bb̄ decay >>>> ..

>>>>

h1(p1) + h2(p2) → V + H + X → ℓ1ℓ2 + bb̄ + X

where V = Z0,W± and ℓ1ℓ2 = ℓ+ℓ−, ℓνℓ

..

d σ̂ab

dΓH

b̄

b

ℓ1

ℓ2
V

Ha(x1p1)

b(x2p2)

fa/h1
(x1,µ

2
F )

fb/h2
(x2,µ

2
F )

X

h1

h2The framework: QCD factorization formula

dσVH =
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa/h1(x1, µ
2
F ) fb/h2(x2, µ

2
F ) d σ̂ab(x1p1, x2p2;µ

2
F )+O

(ΛQCD

Q

)p

(

ΛQCD

Q

)p
(with p ≥ 1): Non perturbative power-corrections (higher-twist).

fa/h(x , µ
2
F ): Non perturbative universal parton densities (PDFs), µF ∼ Q.

d σ̂ab: Hard scattering cross section. calculable with a perturbative expansion in αS (Q)

d σ̂ab = d σ̂
(0)
ab + d σ̂

(1)
ab (µ2

R) + d σ̂
(2)
ab (µ2

R) +O(α3
S ) .

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x , µ
2
F )

Giancarlo Ferrera – Università & INFN Milano Loops & Legs 2014 – Weimar – 1/5/2014

Higher-order QCD effects for associated VH production and decay at the LHC 3/18

• NNLO QCD corrections for VH are basically the same of DY 
(1~3% at the LHC)

    [Van Neerven et al 1991, Brein, Harlander, Djouadi 2000]

• For ZH there is also gg->ZH top-loop, the most accurate 
prediction covers gg->ZH @ NLO QCD in the heavy-top limit

    (5% at the LHC)
    [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]

• NNLO top-mediated contribution
    (1~2% at the LHC)
    [Brei, Harlander, Wiesemann, Zirke 2011]

• N3LO threshold corrections computed
    [Kumal, Mandal, Ravindran (2014)]

• The inclusive H → bb decay rate is known up to fourth order in 
QCD (0.1%) [Baikov,Chetyrkin,Kuhn(’05)] (and up to NLO EW 
(1~2%) [Dabelstein, Hollik; Kniehl (1992)])

• Fully differential NNLO QCD corrections for VH, including leptonic V decays with spin correlations and NLO H decay 
HVNNLO [Ferrera, Grazzini, FT (2011, 2014)] (qT subtraction method)                                                                         
MCFM [Campbell, Ellis, Giele, Williams (2016)] (N-jettiness method) + top-loop contributions from [Brein et al (2011)]

• NNLO fully-differential decay rate H → bb computed through new non-linear mapping method 
[Anastasiou,Herzog,Lazopoulos(2012)] and the Colourful (dipole) method [Del Duca,Duhr,Somogyi,FT,Trocsanyi (2015)]

• Resummation of jet-veto and transverse-momentum logarithms performed [Y.Li,Liu(2014)][Shao,C.S.Li,H.T.Li(2013)],
[Dawson,Han,Lai,Leibovich,Lewis(2012)]

QCD corrections (differential)

(parton level)

9



* Event generators
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QCD+EW corrections to HV j
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ū

H

W−

d

q̄

q

W−
ν̄e

e−

g

ū
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Sensitive to the trilinear Higgs boson coupling.

All EW amplitudes computed with OpenLoops that 
recently achieved automation also for EW corrections11



1. mismatch of resonance virtuality among real and subtractions in the NLO computation
2. more seriously this mismatch affect the R/B in POWHEG event generation

The POWHEG BOX RES

The solutions have been discussed in Jezo, Nason, arXiv:1509.09071. The output of this has

been a major revision of the POWHEG BOX V2 code: the POWHEG BOX RES.

• For each flavour structure, the code automatically finds all the possible resonance

histories compatible with the partonic process at hand and keeps track of them,

while generating radiation from each resonance, preserving the virtuality of the res-

onances.

• It is now possible to keep track of all the decay chains, allowing to pass this informa-

tion to Pythia or Herwig, that can complete the shower by preserving the resonance

virtualities. . .

• . . . and to keep the hardest radiation in the decay of each resonance, for every gen-

erated event. In this way, an event has several QCD or QED radiations attached to

it.

Pythia and Herwig have then to be instructed not to produce any radiation harder

than the one already present at the Les Houches level, for each resonance decay.

Tested on single-top and on the non-trivial ℓ+νℓ l−ν̄l bb̄ production (Ježo, Lindert, Nason, C.O.,

Pozzorini, arXiv:1607.04538).

Applied now to HV and HVj production, where the virtuality of the V boson is pre-

served when photon radiation is produced.

The POWHEG BOX RES

The solutions have been discussed in Jezo, Nason, arXiv:1509.09071. The output of this has

been a major revision of the POWHEG BOX V2 code: the POWHEG BOX RES.

• For each flavour structure, the code automatically finds all the possible resonance

histories compatible with the partonic process at hand and keeps track of them,

while generating radiation from each resonance, preserving the virtuality of the res-
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• It is now possible to keep track of all the decay chains, allowing to pass this informa-

tion to Pythia or Herwig, that can complete the shower by preserving the resonance

virtualities. . .

• . . . and to keep the hardest radiation in the decay of each resonance, for every gen-

erated event. In this way, an event has several QCD or QED radiations attached to

it.

Pythia and Herwig have then to be instructed not to produce any radiation harder

than the one already present at the Les Houches level, for each resonance decay.

Tested on single-top and on the non-trivial ℓ+νℓ l−ν̄l bb̄ production (Ježo, Lindert, Nason, C.O.,
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Resonances

When dealing with resonances whose decay products can radiate, we have two technical prob-

lems to tackle. Consider for example e−ν̄eµ+νµbb̄
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1) Problem at NLO level

Standard subtraction schemes to construct the counterterms to real diagrams (e.g. Catani-

Seymour, Frixione-Kunszt-Signer/FKS) do not preserve the virtuality of the resonances. For

example, when the W− b̄g system is such that the t̄ is on-shell, its counterterm is off-shell,

spoiling infra-red cancellation in the narrow width approximation.

ΦR =⇒ (ΦB, Φrad) , ΦB = underlying Born

Carlo Oleari NLO QCD+EW corrections for HV and HV+jet in the POWHEG BOX RES 3
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QCD+EW corrections to HV j

g

ū
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ū

H

W−

d

q̄

q

W−
ν̄e

e−

g

ū
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NLO results at fixed order for HW− and HW−j production
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• EW corrections can largely exceed the ten percent level in the high-energy regions, where

Sudakov logarithms become dominant.

• An example is the invariant mass of the HV pair in HV and HVj production, where the EW

corrections reach −30% around 2 TeV.
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MiNLO + Parton Shower results for HW−j production
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• These results closely agree with the corresponding ones for HW− production.

• This supports the fact that the MiNLO predictions for HVj should preserve NLO QCD+EW

accuracy for inclusive (with respect to the jet) quantities.

Carlo Oleari NLO QCD+EW corrections for HV and HV+jet in the POWHEG BOX RES 11
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HV vs. HV j generators
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• Scale variation bands (details in arXiv:1706.03522)

• With MiNLO, the yHW and pHW
T distributions computed with the HWj generator are finite and

agree with the results for HW.

• yHW has NLO accuracy both in HV and with HVj.

pHW
T has LO accuracy for HV and NLO accuracy for HVj.

Carlo Oleari NLO QCD+EW corrections for HV and HV+jet in the POWHEG BOX RES 12
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NNLO REWEIGHTING (2)

➤ NLO accurate predictions from set of events produced by VH+j MiNLO generator: 

➤ Rescale all weights by a factor     which is differential in Born kinematics: 

➤ Such a rescaling gives NNLO accurate set of events (by construction):
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POWHEG + MINLO

➤ POWHEG VH+j generator integrates the “B-tilde” function: 

➤ Multiscale Improved NLO (MiNLO): change renormalisation scale in calculation 

➤ Resulting function to integrate: 

with:  

➤ finite result when first jet unresolved (         ) 

➤ NLO accuracy retained after integrating out real radiation (no merging scale!)

[1002.2581; Alioli, Nason, Oleari, Re] 
[1206.3572; Hamilton, Nason, Zanderighi]

B̃NLO = ↵s(µR)


B + ↵s(µR)

✓
V (µR) +

Z
d�rR

◆�

Recipe: 
(a) Start with your old renormalisation scale (MVH). 
(b) Change scale for each QCD vertex (CKKW-like clustering) 
(c) attach Sudakov form factors for each coloured line 

i) emissions with very low qT are damped 
ii) finite results in    qT->0 limit (unresolved jet)qT ! 0
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• Already in YR4 NNLOPS for HW: in a nutshell 
Starting from the VHJ generator:

‣    
Preserve NLO0 accuracy for VH

‣    

Preserve NLO accuracy for VHJ production
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ASSOCIATED HIGGS PRODUCTION

➤ phase-space parametrisation: 

➤ cross-section in terms of Collins-Soper angles: 

➤ neglect dependence on          (validated) 

FINALLY:  
– one 3D histogram for each A-coefficient (8+1 tables) 
– still numerically challenging as each bin is an integral  

over 2-dim phase-space
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GROWING COMPLEXITY
➤ Easy to imagine: with bigger phase-space (formally simple) procedure becomes 

computationally involving… 

(a)Higgs production (ggH):      1-dim     1 variable   (1D histogram = 25 bins) 

(b)Drell-Yan production:           3-dim     3 variables (3D histogram = 15 625 bins) 

(c)VH production:                    6-dim     6 variables (6D histogram = ??? [244M bins])
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In principle one could get distributions with the highest 
achievable accuracy combining 3 event samples as follows: 

1) event sample with QCD @ NNLOPS 
2) event sample with EW @ NLOPS 
3) event sample with LO PS 

QCD NNLO + EW NLO + PS = 1 + 2 - 3

Possible recipe for QCD@NNLOPS+EW@NLOPS
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* A closer look at the radiative corrections: production
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• Contributes to the cross section at order yt2 g2 αs2

• At one-loop order it amounts to about 4% (6%) of the total 
Higgs strahlung cross section at the LHC with 8TeV (14TeV)

• Rather strong renormalisation and factorisation scale 
dependence of about 30%

‣ increase the theoretical uncertainty of the HZ relative to 
the WH process

• Drell–Yan type contribution

• They contribute to the cross section at order g4 αsn (n = 0, 1, 2)

• increase the cross section by about 30% with respect to LO 

• top-loop-induced contributions
• Interference with the LO and the real-emission 

NLO amplitude is of order yt g3 αs2

• numerical impact is at the percent level.
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Figure 1: Representative diagrams to hadronic HZ production of Drell–Yan type up to
NNLO (a-f) and non-Drell–Yan-like NNLO graphs with Higgs radiation o↵ top-quark loops;
both types of corrections (up to NNLO) are not considered in this publication.
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both types of corrections (up to NNLO) are not considered in this publication.
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Figure 2: Representative diagrams to hadronic HZ production via quark-loop-induced
gluon fusion. It is understood that crossed diagrams have to be taken into account as
well.

6

Higgs boson associated production
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h1 h2 ! F a colorless system

• qT is the transverse momentum of the colorless system (F), it is exactly zero at the 
leading order

• for qT.ne.0 there can be only divergences from single unresolved parton 
configurations

✓ can be treated with NLO subtraction methods like CS dipoles

• double unres. singularities are all associated with qT = 0 configurations

✓ can be treated by an additional subtraction defined exploiting the knowledge 
of the logarithmically enhanced contributions from the qT resummation 
formalism   [Catani, De Florian, Grazzini 2000]

Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

qT -subtraction method at NNLO [Catani,Grazzini(’07)]

h1(p1) + h2(p2) → F (M, qT ) + X

F is one or more colourless particles (vector bosons, leptons, photons, Higgs
bosons,. . . ) [Catani,Grazzini(’07)]. q̄

q

qT = −kT
F

kT

g

Key point I: at LO the qT of the F is exactly zero.

dσF
(N)NLO |qT ̸=0 = dσF+jets

(N)LO ,

for qT ̸= 0 the NNLO IR divergences cancelled with the NLO subtraction method
(e.g. with dipole formalism [Catani,Seymour(’98)] as in MCFM).

The only remaining NNLO singularities are associated with the qT → 0 limit.

Key point II: treat the NNLO singularities at qT = 0 by an additional subtraction
using the universality of logarithmically-enhanced contributions from qT
resummation formalism [Catani,de Florian,Grazzini(’00)].

dσF
NnLO

qT→0
−→ dσF

LO⊗Σ(qT/M)dq2
T = dσF

LO⊗
∞
∑

n=1

2n
∑

k=1

(αS

π

)n

Σ(n,k)M
2

q2
T

lnk−1 M2

q2
T

d2qT

dσCT qT→0
−→ dσF

LO ⊗ Σ(qT/M)dq2
T
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Production: qT subtraction method  [Catani, Grazzini 2007]
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Production: qT subtraction method  [Catani, Grazzini 2007]

• the choice of the counter term (CT) has arbitrariness but the qT→0 limit 
behavior is universal 

• CT regularize simultaneously the real-virtual and the double real 
integration that have to be run together 

• the Hard function H contains both the double virtual amplitude and the 
integral of the CT 

✓ its process dependent part can be obtained by the virtual amplitude 
via a universal process independent factorisation formula 
[Catani, Cieri, De Florian, Ferrera, Grazzini 2009] 

• the method has been used for: 
ggF Higgs production [Catani, Grazzini 2007], 
DY and Diphoton [Catani, Cieri, De Florian, Ferrera, Grazzini 2009], 
VV′ production [Grazzini,Kallweit,Rathlev,Torre 2013] and 
[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi 2014]

Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

The final result valid also for qT = 0 is:

dσF
(N)NLO = HF

(N)NLO ⊗ dσF
LO +

[

dσF+jets

(N)LO − dσCT
(N)LO

]

,

where HF
NNLO =

[

1 +
αS

π
HF (1) +

(

αS

π

)2

HF (2)

]

The choice of the counter-term has some arbitrariness but it must behave
dσCT qT→0

−→ dσF
LO ⊗ Σ(qT/M)dq2

T where Σ(qT/M) is universal.

dσCT regularizes the qT = 0 singularity of dσF+jets: double real and real-virtual
NNLO contributions.

The finite part of two-loops virtual corrections is contained in the hard-collinear
function HF

NNLO . Its process dependent part can be directly related to the all-order
virtual amplitude by an universal (process independent) factorization formula
[Catani,Cieri,de Florian,G.F.,Grazzini(’09)] (→ L.Cieri talk).

Final state partons only appear in dσF+jets so that NNLO IR-safe cuts are
included in the NLO computation: observable-independent NNLO extension
of the subtraction formalism.
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Fully differential cross section:
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Figure 40: Left: transverse-momentum distributions of the Higgs boson in W+H production at LO and including
NNLO QCD and NLO EW corrections (upper plots) and relative higher-order contributions (lower plots) for⇥
s = 13 TeV and MH = 125 GeV. Right: the same for W⇥H production. Note that ⌥⇥ is based on the central

value of the photon PDF of NNPDF2.3QED, while ⌃⇥ in Tables 27–33 is based on combined results using the
median and the photon PDF of MRST2004QED (and smaller by a factor 0.7), see text.

Differential cross section results in NNLO QCD + NLO EW accuracy have been computed follow-
ing the same procedure as outlined above for the fiducial cross section. QCD corrections are calculated
with VHNNLO using the settings reported above for the computation of the fiducial cross sections. The
EW corrections are again calculated with HAWK as in the previous section, with the only difference in
the calculation of the photon-induced contribution. Instead of working with many PDF replicas we have
calculated ⌃� with the central PDF of NNPDF2.3QED. In order to obtain ⌃� in the same setup as for
the integrated cross sections of the previous section (for

⇥
s = 13 TeV), the shown results on ⌃� in WH

production should be rescaled by a factor of 0.7. This rescaling is based on the corresponding integrated
results for ⌃� . Taking over the relative uncertainty from the integrated cross section as well, we get the
estimate �� ⌃ 1.5%. For ZH production ⌃� and �� have a phenomenologically negligible impact.

The theoretical uncertainties of differential cross sections originating from unknown higher-order
EW effects can be estimated by

�EW = max{1%, ⌥2EW,��}, (I.5.20)

i.e. �EW is taken somewhat more conservative than for integrated cross sections, accounting for possible
enhancements of higher-order effects due to a kinematical migration of events in distributions. Note that
⌥2EW, in particular, covers the known effect of enhanced EW corrections at high momentum transfer (EW
Sudakov logarithms, etc.).

Figures 40–44 show the impact of radiative corrections of the most important differential distribu-
tions for Higgs boson production via WH mode in the SM, while in Figures 45–47 the same effects are
shown for the Higgs boson production in association with a Z boson. The figures generically show the
known size of the NLO QCD corrections at the level of ⌃ 20⇤30% in the most important phase-space
regions. At NNLO, the QCD corrections amount to some per cent in the dominating regions, but can

�EW = �EW /�LO

�� = ��/�LO

• LHC13
• anti-kt with R=0.4
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In the calculation of the QCD-based cross sections, the renormalization and factorization scales
are set equal to the invariant mass of the VH system,

µ = µR = µF = MVH, M2
VH ⌅ (pV + pH)

2, (I.5.11)

and both scales are varied independently in the range MVH/3 < µ < 3MVH. The PDFs are taken from
the set PDF4LHC15_nnlo_mc PDFs.

For the calculation of the EW corrections we employed the NNPDF2.3QED PDF set [279], which
includes EW corrections and a photon PDF. For the calculation of photon-induced contributions to the
cross sections with a realistic error estimate we took into account the photon PDF of the MRST2004QED
PDF set [302] as well. A considerable reduction in the photon PDF uncertainty can be achieved by using
the more recent LUXqed_plus_PDF4LHC15_nnlo_100 PDF set [280].

Note, however, that the relative EW correction factor, which is used in the following, hardly de-
pends on the PDF set, so that the uncertainty due to the mismatch in the PDF selection is easily covered
by the other remaining theoretical uncertainties. Moreover, the EW corrections show a very small de-
pendence on the factorization scale, so that the use of µF = MV + MH is acceptable,I.27 although full
consistency would require to use equal QCD and QED factorization scales.

For the fiducial cross section and for differential distributions the following reconstruction scheme
and cuts have been applied. Jets are constructed according to the anti-kT algorithm [191] with D = 0.4,
using the default recombination scheme (E scheme). Jets are constructed from partons j with

|⇧j | < 5 , (I.5.12)

where yj denotes the rapidity of the (massive) jet. In the presence of phase-space cuts and in the gen-
eration of differential distributions, the treatment of real photons, which appear as part of the NLO EW
corrections, has to be specified. In the following we assume perfect isolation of photons from leptons.I.28

The charged leptons l have to pass the following acceptance cuts,

pTl > 15 GeV, |yl| < 2.5 . (I.5.13)

For ZH production with Z �  + ⇥ the invariant mass of the two leptons should further concentrate
around the Z pole,

75 GeV < Mll < 105 GeV. (I.5.14)

While the ZH cross sections are independent from the CKM matrix, quark mixing has some effect
on WH production. For the calculation of the latter we employed a Cabbibo-like CKM matrix (i.e.
without mixing to the third quark generation) with Cabbibo angle ⌅C fixed by sin ⌅C = 0.225. Moreover,
we note that we employ complex W- and Z-boson masses in the calculation of the EW corrections in the
standard HAWK approach, as described in Ref. [258].

The Higgs boson is treated as on-shell particle in the following consistently, since its finite-width
and off-shell effects in the signal region are suppressed in the Standard Model.

I.5.2.c Total VH cross sections
Tables 27 and 28 summarize the total Standard Model W±H cross sections with W+�l+�l and W⇥�l⇥�̄l
as well as the corresponding uncertainties for different proton–proton collision energies for a Higgs bo-
son mass MH = 125 GeV. Tables 29 and 30 likewise show the respective results on the total Standard
Model ZH cross sections with Z �  + ⇥ and Z � ��̄ (summed over three neutrino generations).

I.27In its present version, HAWK does not support dynamical scales.
I.28Perfect isolation to some extent applies to muons going out into the muon chamber. A simulation of radiation off electrons

requires some recombination of collinear electron–photon pairs, mimicking the inclusive treatment of electrons within electro-
magnetic showers in the detector. The two different treatments were compared in Ref. [258], revealing differences at the 1%
level for the relevant physical observables.

(parton level)
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For ZH production with Z ! `+`� the invariant mass of the two leptons should further concentrate
around the Z pole,

75 GeV < Mll < 105 GeV. (I.5.14)

While the ZH cross sections are independent from the CKM matrix, quark mixing has some effect
on WH production. For the calculation of the latter we employed a Cabbibo-like CKM matrix (i.e.
without mixing to the third quark generation) with Cabbibo angle ✓C fixed by sin ✓C = 0.225. Moreover,
we note that we employ complex W- and Z-boson masses in the calculation of the EW corrections in the
standard HAWK approach, as described in Ref. [258].

The Higgs boson is treated as on-shell particle in the following consistently, since its finite-width
and off-shell effects in the signal region are suppressed in the Standard Model.

I.5.2.c Total VH cross sections
Tables 27 and 28 summarize the total Standard Model W±H cross sections with W+!l+⌫l and W�!l�⌫̄l

as well as the corresponding uncertainties for different proton–proton collision energies for a Higgs bo-
son mass MH = 125 GeV. Tables 29 and 30 likewise show the respective results on the total Standard
Model ZH cross sections with Z ! `+`� and Z ! ⌫⌫̄ (summed over three neutrino generations).

I.27In its present version, HAWK does not support dynamical scales.
I.28Perfect isolation to some extent applies to muons going out into the muon chamber. A simulation of radiation off electrons

requires some recombination of collinear electron–photon pairs, mimicking the inclusive treatment of electrons within electro-
magnetic showers in the detector. The two different treatments were compared in Ref. [258], revealing differences at the 1%
level for the relevant physical observables.
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Table 27: Total W+(!l+⌫l)H cross sections including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s

[%] �DY
NNLOQCD[fb] �t-loop[fb] �EW[%] ��[fb]

7 40.99 +0.7
�0.9 ±1.9/ ± 0.7/ ± 2.0 42.78 0.42 �7.2 0.88+1.10

�0.10

8 49.52 +0.6
�0.9 ±1.8/ ± 0.8/ ± 2.0 51.56 0.53 �7.3 1.18+1.38

�0.14

13 94.26 +0.5
�0.7 ±1.6/ ± 0.9/ ± 1.8 97.18 1.20 �7.4 3.09+3.33

�0.37

14 103.63 +0.3
�0.8 ±1.5/ ± 0.9/ ± 1.8 106.65 1.36 �7.4 3.55+3.72

�0.43

Table 28: Total W�(!l�⌫̄l)H cross sections including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s

[%] �DY
NNLOQCD[fb] �t-loop[fb] �EW[%] ��[fb]

7 23.04 +0.6
�0.8 ±2.2/ ± 0.6/ ± 2.3 23.98 0.24 �7.0 0.51+0.69

�0.05

8 28.62 +0.6
�0.8 ±2.1/ ± 0.6/ ± 2.1 29.71 0.31 �7.1 0.70+0.94

�0.07

13 59.83 +0.4
�0.7 ±1.8/ ± 0.8/ ± 2.0 61.51 0.78 �7.3 2.00+2.34

�0.22

14 66.49 +0.5
�0.6 ±1.7/ ± 0.9/ ± 1.9 68.24 0.89 �7.3 2.32+2.65

�0.26

Table 29: Total ZH cross sections with Z ! `+`� including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s [%] �DY

NNLOQCD[fb] �
ggZH
NLO+NLL[fb] �t-loop[fb] �EW[%] ��[fb]

7 11.43 +2.6
�2.4 ±1.6/ ± 0.7/ ± 1.7 10.91 0.94 0.11 �5.2 0.03+0.04

�0.00

8 14.18 +2.9
�2.4 ±1.5/ ± 0.8/ ± 1.7 13.36 1.33 0.14 �5.2 0.04+0.05

�0.00

13 29.82 +3.8
�3.1 ±1.3/ ± 0.9/ ± 1.6 26.66 4.14 0.31 �5.3 0.11+0.12

�0.01

14 33.27 +3.8
�3.3 ±1.3/ ± 1.0/ ± 1.6 29.47 4.87 0.36 �5.3 0.12+0.13

�0.01

Table 30: Total ZH cross sections with Z ! ⌫⌫̄ (summed over three neutrino generations) including QCD and
EW corrections and their uncertainties for different proton–proton collision energies

p
s for a Higgs boson mass

MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s [%] �DY

NNLOQCD[fb] �
ggZH
NLO+NLL[fb] �t-loop[fb] �EW[%] ��[fb]

7 68.18 +2.6
�2.4 ±1.6/ ± 0.7/ ± 1.7 64.70 5.59 0.64 �4.3 �0.00

8 84.56 +2.9
�2.4 ±1.5/ ± 0.8/ ± 1.7 79.25 7.89 0.81 �4.3 �0.00

13 177.62 +3.8
�3.1 ±1.3/ ± 0.9/ ± 1.6 158.10 24.57 1.85 �4.4 �0.00

14 198.12 +3.8
�3.3 ±1.3/ ± 1.0/ ± 1.6 174.77 28.88 2.11 �4.4 �0.00

Inclusive
Cross Section

Differential
Cross Section

Higgs cross section working group
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Figure 44: Left: missing transverse momentum in W+H production at LO and including NNLO QCD and NLO
EW corrections (upper plots) and relative higher-order contributions (lower plots) for

⇥
s = 13 TeV and MH =

125 GeV. Right: the same for W⇥H production. Note that ⌥⇥ is based on the central value of the photon PDF of
NNPDF2.3QED, while ⌃⇥ in Tables 27–33 is based on combined results using the median and the photon PDF of
MRST2004QED (and smaller by a factor 0.7), see text.
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Figure 45: Left: transverse-momentum distributions of the Higgs boson in Z(�  + ⇥)H production at LO and
including NNLO QCD and NLO EW corrections (upper plots) and relative higher-order contributions (lower plots)
for

⇥
s = 13 TeV and MH = 125 GeV. Right: the same for Z(� ��̄)H production.
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(b) pT,H > 200GeV

Figure 4: Comparison of the LO hadronic cross section in the e↵ective and the full theory
for

p
s = 8TeV (dashed) and 14TeV (solid).

Taking into account the kinematical constraint
p
ŝ > MH + MZ, the region where the

e↵ective theory is nominally applicable shrinks to zero for MH > 2mt �MZ ⇡ 253GeV.
Figure 4 (a) compares the total inclusive LO hadronic cross section at 8TeV and 14TeV
when the full top- and bottom-mass dependence is taken into account to the e↵ective-
theory result. The behaviour is expected from the considerations above: The e↵ective
theory works better for smaller Higgs masses, agreeing to the full results within 2% (25%)
for 8TeV (14TeV) at MH = 125GeV. Note that the PDFs suppress the contribution from
larger ŝ, thus emphasising the region where the 1/mt expansion converges. For larger
values of MH, the e↵ective-theory approximation deteriorates; at MH = 200GeV, the
deviation to the full result is 74% (143%) for 8TeV (14TeV).

The situation becomes more problematic in the boosted regime which we study by im-
posing a lower cut on the Higgs’ transverse momentum, requiring pT,H > 200GeV, see
Fig. 4 (b). In this case, the minimal value for

p
ŝ is already above the top-quark thresh-

old when MH = 100GeV. Consequently, the direct application of the e↵ective-theory
approximation is o↵ by almost a factor of five to ten, which is clearly unacceptable.

A direct evaluation of the NLO contribution in the e↵ective theory is therefore not possible.
However, in Refs. [21–27] it was shown for the process gg ! H at NLO and NNLO that
the perturbative correction factor, defined at NLO in Eq. (2), depends only very weakly on
the top-quark mass. To some degree, this holds even far outside the convergence region of
the heavy-top expansion, as long as only the leading term in 1/mt is taken into account.
Motivated by this observation, we move on to NLO and present our results in the next
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Figure 5: NLO hadronic cross section as obtained by using Eq. (17) (upper), and NLO

K-factor (lower) for
p
s = 8TeV (dashed) and 14TeV (solid).

section.

4.3 Next-to-leading order results

4.3.1 Correction factor

As outlined above, we evaluate the NLO hadronic cross section by rescaling the full LO
result by the perturbative K-factor calculated in the e↵ective theory:

�NLO
approx(mt,mb) = �LO(mt,mb)K(mt ! 1,mb = 0)

=
�LO(mt,mb)

�LO(mt ! 1,mb = 0)
�NLO(mt ! 1,mb = 0) .

(17)

Since we are aiming at a NLO quantity, it actually might be more appropriate to evaluate
the formally LO cross sections in Eq. (17) with NLO PDFs. We checked that the e↵ect
of this is much smaller than the uncertainty due to variations of the renormalization and
factorization scale, which is why we stick to LO PDFs in �LO.

15

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]

ggZH contribution to the associated production
√s = 8 TeV (dashed) and 14 TeV (solid)

 1

 10

 100

 1.9

 2

 100  120  140  160  180  200
MH[GeV]

�
(p
p
(g
g
)
!

H
Z
+
X
)
[f
b
]

K
L
M

E

LO
NLO

(a) Inclusive cross section

 1

 10

 100

 2

 2.1

 100  120  140  160  180  200
MH[GeV]

�
(p
p
(g
g
)
!

H
Z
+
X
)
[f
b
]

K
L
M

E

LO
NLO

(b) pT,H > 200GeV

Figure 5: NLO hadronic cross section as obtained by using Eq. (17) (upper), and NLO

K-factor (lower) for
p
s = 8TeV (dashed) and 14TeV (solid).

section.

4.3 Next-to-leading order results

4.3.1 Correction factor

As outlined above, we evaluate the NLO hadronic cross section by rescaling the full LO
result by the perturbative K-factor calculated in the e↵ective theory:

�NLO
approx(mt,mb) = �LO(mt,mb)K(mt ! 1,mb = 0)

=
�LO(mt,mb)

�LO(mt ! 1,mb = 0)
�NLO(mt ! 1,mb = 0) .

(17)

Since we are aiming at a NLO quantity, it actually might be more appropriate to evaluate
the formally LO cross sections in Eq. (17) with NLO PDFs. We checked that the e↵ect
of this is much smaller than the uncertainty due to variations of the renormalization and
factorization scale, which is why we stick to LO PDFs in �LO.

15

26



gg->ZH diagrams

methodology, and present results both at the parton level and after merging and matching

to a parton shower. In Section 3, we explore the results of various 2HDM scenarios using

the same calculation setup. We draw our conclusions in the final section.

2. Gluon induced ZH production in the SM

Representative Feynman diagrams contributing to the gg → ZH process in the SM are

shown in Fig. 1. Massive fermions, t and b−quarks, run in the box, while all flavours run

in the triangle. The contribution of the two light generations to the triangle vanishes as

required by the anomaly cancellation. In practice, it is only the axial vector part of the

heavy-quark-Z coupling that contributes to the amplitude. The amplitude for this process

was first computed in [25,26].

g

g

Z

H

g

g

Z

Z

H

Figure 1: Representative Feynman diagrams for ZH production in gluon fusion in the SM.

In what follows, we will first review the main features of the 2 → 2 process for gluon

induced ZH production before discussing the implications of the 2 → 3 one. A sample

of the relevant diagrams contributing to ZHj is shown in Fig. 2. In addition to the gg

initial state amplitudes, the qg and qq̄ channels also open up, when an additional jet is

allowed. The gg → ZHg amplitudes were used in [46] to calculate the gg part of the ZHj

cross-section at the LHC for various jet transverse momentum cuts. In what follows, we

will consider these along with the qg and qq̄ diagrams to discuss the behaviour of the 2 → 3

amplitudes and subsequently to obtain a merged sample of 0 and 1-jet multiplicitities.

2.1 Calculation setup

In this work, we employ the MadGraph5 aMC@NLO framework [20]. The one-loop

amplitudes squared for ZH and ZHj can be obtained with the help of MadLoop [47],

which computes one–loop matrix elements using theOPP integrand–reduction method [48]

(as implemented in CutTools [49]). A reweighting procedure is then employed to over-

come the present limitations concerning event generation for loop-induced processes 1. A

reweighting method has been employed already for a series of processes within the Mad-

Graph5 aMC@NLO framework [34,51,52] both at LO and NLO accuracy. This procedure

involves generating events through the implementation of a tree-level effective field theory

(EFT), in this case obtained by taking the limit of infinite top-quark mass with all other

quarks being massless. In practice, a UFO model [53,54] including the effective theory in-

teractions is imported in the simulation framework. After event generation, event weights

1Automated event generation for loop-induced processes is currently being finalised [50].
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Leading Order:
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Exact virtual NLO part:

methodology, and present results both at the parton level and after merging and matching

to a parton shower. In Section 3, we explore the results of various 2HDM scenarios using

the same calculation setup. We draw our conclusions in the final section.

2. Gluon induced ZH production in the SM

Representative Feynman diagrams contributing to the gg → ZH process in the SM are

shown in Fig. 1. Massive fermions, t and b−quarks, run in the box, while all flavours run

in the triangle. The contribution of the two light generations to the triangle vanishes as

required by the anomaly cancellation. In practice, it is only the axial vector part of the

heavy-quark-Z coupling that contributes to the amplitude. The amplitude for this process

was first computed in [25,26].

g

g

Z

H

g

g

Z

Z

H

Figure 1: Representative Feynman diagrams for ZH production in gluon fusion in the SM.

In what follows, we will first review the main features of the 2 → 2 process for gluon

induced ZH production before discussing the implications of the 2 → 3 one. A sample

of the relevant diagrams contributing to ZHj is shown in Fig. 2. In addition to the gg

initial state amplitudes, the qg and qq̄ channels also open up, when an additional jet is

allowed. The gg → ZHg amplitudes were used in [46] to calculate the gg part of the ZHj

cross-section at the LHC for various jet transverse momentum cuts. In what follows, we

will consider these along with the qg and qq̄ diagrams to discuss the behaviour of the 2 → 3

amplitudes and subsequently to obtain a merged sample of 0 and 1-jet multiplicitities.

2.1 Calculation setup

In this work, we employ the MadGraph5 aMC@NLO framework [20]. The one-loop

amplitudes squared for ZH and ZHj can be obtained with the help of MadLoop [47],

which computes one–loop matrix elements using theOPP integrand–reduction method [48]

(as implemented in CutTools [49]). A reweighting procedure is then employed to over-

come the present limitations concerning event generation for loop-induced processes 1. A

reweighting method has been employed already for a series of processes within the Mad-

Graph5 aMC@NLO framework [34,51,52] both at LO and NLO accuracy. This procedure

involves generating events through the implementation of a tree-level effective field theory

(EFT), in this case obtained by taking the limit of infinite top-quark mass with all other

quarks being massless. In practice, a UFO model [53,54] including the effective theory in-

teractions is imported in the simulation framework. After event generation, event weights

1Automated event generation for loop-induced processes is currently being finalised [50].

– 4 –

not known yet

Exact real radiation for NLO by: Hespel, Maltoni, Vryonidou ’15

master integrals known from 
Gehrmann, Huber,Maitre ’05

Thursday, June 29, 17

t

(a)

t, b
Z⇤

(b)

t
G0

(c)

t

(d)

t

(e)

t

(f)

t, b
Z⇤, G0

(g)

t, b
Z⇤, G0

(h)

q

Z⇤, G0

(i)

t

(j)

t

t, b

(k)

t, b
Z⇤

(l)

t
G0

(m)

Figure 2: Representative diagrams to hadronic HZ production via quark-loop-induced
gluon fusion. It is understood that crossed diagrams have to be taken into account as
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• The number of scales is the limiting factor for the reduction program to work 

• numerics might help to reduce the complexity of the reduction algorithms 

‣ Example: t-channel single top at NNLO 

‣ reduction of double box diagrams successfully achieved exploiting the relation:

A possible recipe that might help in the 
reduction to master integrals

The Born contribution, shown in Fig. 1, is given by

A(0) = δtbδduA
(0)
1 , (4)

with
A(0)1 =

1
t̂−m2W

ū(kt)γµ
1
2
(1− γ5)u(kb)ū(kd)γµ

1
2
(1− γ5)u(ku) . (5)

The electroweak coupling can be expressed in terms of the electric charge e of a positron and
the sine of the Weinberg mixing angle ϑW through

gW =
e√

2sin(ϑW )
. (6)

Working in leading order in the electroweak coupling, the renormalization scheme of the elec-
troweak parameters is not fixed. For phenomenological applications one may use the on-shell
scheme in which the weak mixing angle can be calculated from the mass of the Z-boson (mZ)
and the mass of theW -boson (mW ) using:

cos2(ϑW ) =
m2W
m2Z

. (7)

The matrix elements of the Cabibbo-Kobayashi-Maskawa matrix, which expresses the eigen-
states of the weak interaction in terms of the mass eigenstates, are denoted by Vi j. Since the
Born amplitude is a purely electroweak process, no colour exchange between the two quark
lines is possible. This is reflected in the colour structure δtbδdu where t,b, . . . describe the
colour indices of the respective quarks and δ denotes the Kronecker delta. However, when
higher order QCD corrections are included, colour exchange between the two quark lines
does become possible.

W

Figure 2: Sample diagrams for single top-quark production at two-loop order.

4

mz : mH : mt ≈ 8 : 11 : 15 

[Assadsolimani, Kant, Tausk, Uwer 2014]

found complete agreement between them.

As a further check on our programs, we have recalculated the two-loop QCD corrections to
the heavy quark vector and axial vector form factors, applying both the dimension-shifting
method and the projection method. After substituting ε-expansions for the master integrals
from Ref. [38], we found complete agreement with the results available in the literature [39,
40].

3.2. Reduction of the double-box diagrams

The reduction of the double-box diagrams involves 9 different topologies, three planar ones
and six non-planar topologies. For each topology two different diagrams exist. Since the
two diagrams belonging to the same topology are connected, it is sufficient to determine the
reduction tables only once for each of the nine topologies.

The reduction of the double-box topologies is significantly more complicated than the vertex
corrections. The increased complexity is due to the larger number of propagators and to the
simple fact that the double-box diagrams involve more scales. In the double-box topologies
theW -boson mass appears in the two-loop integrals. In addition, the double-box topologies
involve ŝ and t̂ while the two-loop form factors depend only on t̂. Applying the dimension-
shifting method, we were not able to generate all the required reduction tables, using the
aforementioned programs. On the other hand, for the simpler double-box topologies, we were
able to reduce also the highest tensor ranks appearing in the calculation when applying the
projectors of Eq. (29). However, even in this case, we were not able to fully reduce the most
complicated double-box topologies. As mentioned before, the increased complexity of the
double-box topologies as compared to the vertex corrections, is a direct consequence of the
large number of independent variables. In the reduction rational functions in the five variables
ŝ, t̂,mt ,mW and d are generated. The manipulation of these rational functions, in combination
with the related increase of expression size, leads to much longer run time and also increased
memory consumption. Having said this, the direction to simplify the reduction is obvious: One
needs to reduce the number of independent variables. Using one variable out of ŝ, t̂,mt ,mW to
define the mass scale will reduce the number of independent variables by one. Expressing in
addition the top-quark mass in terms of theW -boson mass (or vice versa), will further reduce
the number of independent variables by one. In Ref. [41] the most precise measurements from
the Tevatron experiments CDF and D0 and the LHC experiments ATLAS and CMS have been
combined. The world average quoted in Ref. [41] reads

mt = 173.34±0.27 (stat) ±0.71 (syst) GeV/c2. (30)

Using in addition the world average for mW as produced by the particle data group [42]

mW = 80.385±0.015 GeV/c2, (31)

we can set to very good approximation

m2t ≈
14
3
m2W , (32)
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addition the top-quark mass in terms of theW -boson mass (or vice versa), will further reduce
the number of independent variables by one. In Ref. [41] the most precise measurements from
the Tevatron experiments CDF and D0 and the LHC experiments ATLAS and CMS have been
combined. The world average quoted in Ref. [41] reads

mt = 173.34±0.27 (stat) ±0.71 (syst) GeV/c2. (30)

Using in addition the world average for mW as produced by the particle data group [42]

mW = 80.385±0.015 GeV/c2, (31)

we can set to very good approximation

m2t ≈
14
3
m2W , (32)
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which is equivalent to
mt ≈ 173.65 GeV/c2. (33)

This value for the top-quark mass is compatible with the aforementioned world average and
deviates less than 2 per mille from the central value quoted in Eq. (30). Since single top-
quark production depends very weakly on the top-quark mass around the nominal value, the
uncertainty introduced by the aforementioned approximation is completely negligible. (Using
this approximation in leading order would lead to effects at the per mille level. For more
details we refer to Ref. [5] where the mass dependence of single top-quark production has
been studied in detail.) Choosing Eq. (32) to reduce the number of independent variables,
leads indeed to an enormous simplification of the reduction procedure. In addition, we also
fine tuned, for the most complicated topologies, the seed generation in the Laporta algorithm.
Using these two techniques, we were able to reduce all the double-box integrals to master
integrals. In cases where the reduction was feasible for arbitrary values of mW and mt , the two
approaches agreed, after specializing the general results to the specific case m2t = 14

3 m
2
W . In

addition, we observed a dramatic reduction in the size of the final expressions, when setting
m2t = 14

3 m
2
W .

4. Results

In this section, we present analytic results for A(2)1,LC, Bh and Bl . The vertex contributions
to A(2)1,SC are given in appendix A. The master integrals entering the corrections to the W -t-
b vertex are known in the literature from studies of the form factors describing the decay
b→ u+W ∗, with mu = 0, mb ̸= 0 [43–49]. For master integrals entering the corrections to
the light quark vertex, see also Ref. [50]. In the results shown below, the master integrals
are kept as symbols, and also the full d dependence is kept. In choosing the basis for the
master integrals, we follow Refs. [43–45]. The definitions of the master integrals are given in
appendix B. For the presentation of the results, it is convenient to introduce rescaled invariants

t =
t̂
m2t

, s=
ŝ
m2t

, (34)

and rescaled spinor structures

Ŝ1 =
S1
mt

, Ŝ3 = S3. (35)

Note, that the vertex corrections only depend on the W -boson mass through the W -boson
propagator. All vertex contributions thus have a universal factor

1
t̂−m2W

.
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• for HZ one could use for example:

91.1876 : 125 : 173.3                     91.1876 : 125.4 : 171.0 

leading to O(1%) error on the correction28



* A closer look at the radiative corrections: decay

29



Such search strategies may be aided by accurate modeling of QCD radiation in the H ! bb̄
decay, which motivates the computation of the fully di↵erential decay rate at next-to-next-to-
leading order (NNLO) accuracy in QCD perturbation theory. Computing fully di↵erential cross
sections and decay rates at NNLO turns out to be rather involved, however the last decade has
witnessed substantial development [10–41] leading to a number of di↵erential results for specific
processes [42–76].

The first computation of the fully di↵erential decay rate of the SM Higgs boson into b-quarks
at NNLO accuracy was published in ref. [47]. That computation was performed with the method of
sector decomposition based on non-linear mappings [13]. Here we o↵er a di↵erent approach based
on the numerical implementation of the general subtraction scheme developed in a series of papers
for the computation of QCD jet cross sections at NNLO accuracy [31–41]. This method, which
is used for the first time in this paper to compute a physical observable at NNLO, employs the
universal infrared factorization of QCD squared matrix elements to define local subtraction terms
for regulating the singularities emerging in unresolved real radiation.

Specifically, we can write the NNLO correction to the cross section of a generic m-jet process
as a sum of three contributions, the tree level double real radiation, the one-loop plus a single
radiation, and the two-loop double virtual terms of the basic process under consideration,

�NNLO =

Z

m+2

d�RR
m+2Jm+2 +

Z

m+1

d�RV
m+1Jm+1 +

Z

m

d�VV
m Jm , (1.1)

and rearrange it as follows,

�NNLO =

Z

m+2

d�NNLO
m+2 +

Z

m+1

d�NNLO
m+1 +

Z

m

d�NNLO
m , (1.2)

where,

d�NNLO
m+2 =

n

d�RR
m+2Jm+2 � d�RR,A2

m+2 Jm �
h

d�RR,A1
m+2 Jm+1 � d�RR,A12

m+2 Jm

io

✏=0
, (1.3)

d�NNLO
m+1 =

nh

d�RV
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Z

1

d�RR,A1
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i
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1
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⌘

A1
i

Jm

o

✏=0
, (1.4)

d�NNLO
m =

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

✏=0
Jm . (1.5)

The subscripts on the integral signs are simply reminders that the integration is over the phase space
of n = m, m + 1 or m + 2 final state particles. Above Jn denotes the value of some infrared-safe
observable J evaluated on an n parton final state.

The right-hand sides of eqs. (1.3) and (1.4) are integrable in four dimensions by construction
[31–34], while the integrability of eq. (1.5) in four dimensions is ensured by the Kinoshita–Lee–
Nauenberg (KLN) theorem on infrared-safe quantities, provided that our subtraction scheme is well
defined.

The counterterms which contribute to d�NNLO
m+2 and to d�NNLO

m+1 were introduced in refs. [33]
and [34]. The integration of the real–virtual counterterms (the last two terms of eq. (1.5)) was
performed in refs. [35, 36, 38]. The integral of the iterated single unresolved counterterm (the third
term of eq. (1.5)) was computed in ref. [39]. The integration of the collinear-type contributions to the
double unresolved counterterm (the second term of eq. (1.5)) was performed in ref. [40]. The soft-
type contributions to the same counterterm were presented in ref. [41]. Most of these results were
given as expansions in ✏ whose coe�cients were computed numerically. Here we present the relevant
integrals with pole coe�cients evaluated analytically, while the finite parts are given numerically.
The final test on the consistency of our subtraction scheme is then to verify that eq. (1.5) is free of
singularities, as prescribed by the KLN theorem. In this paper, we perform that check analytically

– 2 –

Decay: Colourful method  [Del Duca, Somogyi and Trocsanyi 2007, 2009]

• completely local method

• based on the universal infrared factorization of QCD squared matrix elements 

• local subtraction terms for regulating the singularities

• Phase space factorization

• O(300) integrals to account of the final state singularities
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Figure 1. Scale dependence of the inclusive decay rate at LO, NLO and NNLO accuracy. The estimated

uncertainty on the numerical results is too small to be appreciated.

The inclusive decay rate is obtained by setting J = 1 and is given by the sum of the leading
order width (3.3) and the NLO (4.19) and NNLO (5.49) corrections. At µ = mH we obtain

�NNLO = �LO



1 +
↵s

⇡

17

3
+
⇣↵s

⇡

⌘2

29.15(2)

�

, (6.1)

in agreement with the known analytic prediction [78]. In figure 1, we compute the inclusive decay
rate at µ = mH/2 and µ = 2mH and compare it to the known analytic result for the scale
dependence, finding excellent agreement.

To illustrate the impact of NNLO QCD corrections on di↵erential distributions, we apply the
Durham jet algorithm [84] with resolution parameter ycut = 0.05 to cluster final state partons and
order the resulting jets in energy. In the top panel of figure 2 we show the energy distribution of
the leading jet in the rest frame of the decaying Higgs boson for two-jet events. In ref. [47] the same
distribution was computed for jets clustered according to the JADE algorithm with ycut = 0.1. We
have repeated that calculation and found excellent agreement with the published results. However,
for two-parton kinematics the energy of the leading jet is just Emax = mH/2, so at leading order
the leading jet energy distribution is a delta function. Furthermore, double unresolved subtractions
for four parton matrix elements, as well as single unresolved subtractions for three parton matrix
elements also contribute to this distribution only at Emax = mH/2. Then, to show the subtraction
method at work on an observable that has a non-trivial distribution already at leading order, we
consider the absolute value of the pseudorapidity of the leading jet, |⌘1|, with respect to an arbitrary
axis. The e↵ect of higher order corrections on this distribution is shown on the bottom panel of
figure 2. In this last illustrative example we note that going from the leading order to NNLO, the
uncertainty bands shrink, and that the NNLO band falls within the NLO band, thereby showing
the good convergence of the perturbative series.

– 17 –

In perfect agreement with:
 [Gorishnii, Kataev, Larin, Surguladze 1990]

[Baikov, Chetyrkin, Kuhn 2006]

Inclusive result

[Del Duca, Duhr, Somogyi, FT, Trocsanyi 2015]
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Differential results
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Fully Differential Decay Rate of a Standard Model Higgs Boson . . . 2101

The simultaneous factorization of the phase space and the matrix ele-
ments allows for integrating out the momenta and sum over the spin, colour
and flavour degrees of freedom of the unresolved particles. We denote all
these steps symbolically by

R

1 and
R

2 where the index shows the number of
unresolved particles. This procedure leads to integrated subtraction terms
that have to be added to cross sections with less particles in the final state
(Eqs. (3)–(5)), which leads to cancellation of the ✏ poles that emerge in the
loop integrals when the divergent integrals in d = 4 dimensions are regu-
lated by dimensional regularization in d = 4–2✏ dimensions. The Laurent-
expansion of these integrals contains poles starting at 1/✏4. We have checked
the cancellation of the leading (1/✏4) and subleading (1/✏3) poles for an ar-
bitrary number m of jets, and the cancellation of all poles for m = 2 and 3
analytically.

3. Predictions

We have implemented the CoLoRFulNNLO method for computing the
fully differential decay rate of a Higgs boson into a bb̄-pair. In our imple-
mentation, we can constrain the phase space of the subtractions by choosing
the value of a dimensionless parameter ↵0 < 1, while ↵0 = 1 means no con-
straint. The three contributions �n (n = m, m + 1, m + 2) depend on ↵0.
However, physical predictions must not depend on ↵0, therefore, checking
that the full prediction is independent of ↵0 gives a strong check of correct-
ness. In Fig. 1, we compare the distribution of the pseudorapidity of the
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Fig. 1. Rapidity distribution of the hardest jet: dependence of the various contri-
butions on ↵0.

[Del Duca, Duhr, Somogyi, FT, Trocsanyi 2015]

Differential results
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Jet algorithm
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configuration consists of quark jets; but for jet production
at hadron colliders, the Born configuration involves two in-
coming and two outgoing jets and many flavour channels
are possible: qq→ qq, qq̄→ gg, gg→ gg, etc. The ability
to assign flavours to the jets is especially useful when com-
bining fixed-order predictions with all-order calculations
(be it for parton showers as in [7] or for analytical resum-
mations [8–10]). This is because all-order calculations are
carried out for a fixed Born configuration, with a single
flavour channel at a time, while fixed-order calculations im-
plicitly sum over all flavour channels and can at best be
split up a posteriori to match onto the individual flavour
channels of the all-order calculation.

As a concrete example, consider the calculation of
higher-order corrections to the process qq̄→ qq̄, Fig. 1a.
An all-order calculation treats the addition of any num-
ber of soft/collinear gluons and extra qq̄ pairs implicitly,
leaving the underlying 2→ 2 flavours unchanged. When
trying to supplement this with results of a fixed-order
calculation one encounters the problem that higher-order
contributions cannot be uniquely assigned to any given
2→ 2 flavour channel – the O (αs) corrections to qq̄→ qq̄
include e.g. a qq̄→ qq̄→ qq̄g piece, but a fixed-order calcu-
lation gives only the squared sum of all qq̄→ qq̄g diagrams,
among them qq̄→ qq̄→ qq̄g and qq̄→ gg→ qq̄g, illustrated
in Fig. 1b and c respectively. There can exist no unambigu-
ous procedure for separating the qq̄→ qq̄g contribution
into its different underlying channels, both because the dif-
ferent channels are not individually gauge invariant and
because they interfere when squaring the amplitude.

One therefore needs a prescription to assign qq̄→ qq̄g
either to the qq̄→ qq̄ or the qq̄→ gg underlying Born 2→ 2
process (or else to declare it irreducibly 2→ 3-like), it only
being in the qq̄→ qq̄ case that one needs to put it together
with the qq̄→ qq̄ all-order calculation. This reclassification
of a 2→ 3 event as a 2→ 2 event is similar conceptually
to what is done in a normal jet algorithm, except that not
only should the momenta of the resulting 2→ 2 config-
uration be infrared and collinear safe, but so should the
flavours. Accordingly we call it a jet-flavour algorithm.

An obvious approach to defining jet flavours at the per-
turbative level would be to start with an existing jet algo-
rithm, such as the kt-clustering [11–13] or cone [14] algo-
rithm, that defines jets such that each particle belongs to at
most one jet. One can then determine the net flavour con-
tent of each of the jets, as the total number of quarks minus
antiquarks for each quark flavour. Jets with no net flavour
are identified as gluon jets, those with (minus) one unit of
net flavour are (anti) quark jets, while those with more than

Fig. 1. a Specific qq̄→ qq̄ flavour channel for a 2→ 2 parton
scattering process; b higher-order diagram that can be seen as
a correction to a; c higher-order diagram that can be seen as
a correction to the process qq̄→ gg, but with the same final-
state partons as b

one unit of flavour (or both a flavour and a different anti-
flavour) cannot be identified with a single QCD parton.

Applied to the kt or cone algorithms, this procedure
yields a jet flavour that is infrared (IR) safe at (rela-
tive) order αs discussed in our example above. However at
(relative) order α2

s a large-angle soft gluon can split into
a widely separated soft qq̄ pair and the q and q̄ may end up
being clustered into different jets, “polluting” the flavour
of those jets; see Fig. 2. Because this happens for arbi-
trarily soft gluons branching to quarks, the resulting jet
flavours are infrared unsafe from order α2

s onwards. We are
not aware of this problem having been discussed previously
in the literature, though there do exist statements that are
suggestive of IR safety issues when discussing flavour [15].

In Sect. 2 we shall discuss IR flavour unsafety with re-
spect to the kt (or “Durham”) algorithm in e+e− [11].
There we shall recall that the kt closeness measure is spe-
cifically related to the divergences of QCD matrix elements
when producing soft and collinear gluons. However there
are no divergences for the production of soft quarks and, as
we shall see, it is the use for quarks of a distance measure
designed for gluons that leads to the infrared unsafety of
jet flavour in the kt algorithm. By taking into account the
absence of a soft-quark divergence when designing the jet-
clustering distance measure, one can eliminate the infrared
divergence of the jet flavour.

The essence of the modification to the kt distance is
that instead of the min(E2

i , E
2
j ) factor that appears usu-

ally, one needs to use max(E2
i , E

2
j ) when the softer of i, j

is a quark. In Sect. 3 we will examine how this can be
extended to processes with incoming hadrons. There the
added difficulty is the need for a particle-beam distance
measure. Traditionally this involves only one dimensionful
scale, related to the squared transverse momentum k2

ti of
the particle. There is a sense in which this can be under-
stood as min(k2

ti, k
2
tB), where k2

tB is some transverse scale
associated with the beam that is larger than all k2

ti and
so could up to now be ignored. In order to obtain a sensi-
ble jet-flavour algorithm we shall however need to consider
also max(k2

ti, k
2
tB) and therefore in Sect. 3 we shall investi-

gate how to construct sensible “beam scales”.
As well as explaining how to build jet algorithms that

provide an infrared-safe jet flavour, we shall also examine
how they fare in practice. In e+e− it will be possible to
carry out tests both with an NLO code (which explicitly
reveals the IR unsafety of flavour in traditional jet algo-

Fig. 2. A large-angle soft gluon splitting to a large-angle soft
qq̄ pair (k3, k4) with the q and q̄ then clustered into different
jets (k1, k2)

[Banfi, Salam, Zanderighi 2006]
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else gets called a jet, in the “inclusive” version of the algo-
rithm).

The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:

d
(F )
ij =(∆η2ij +∆φ2

ij)

×

{
max(k2

ti, k
2
tj) , softer of i, j is flavoured,

min(k2
ti, k

2
tj) , softer of i, j is flavourless,

(10)

where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
minimum of k2

ti and some transverse scale associated with
the beam, k2

tB, which has never been explicitly needed so
far because it was always larger than any of the k2

ti. The
analogue of (10) would then be to take

d
(F )
iB =

{
max(k2

ti, k
2
tB) , i is flavoured,

min(k2
ti, k

2
tB) , i is flavourless.

(11)

The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.

Flavor-kT provides an IRC safe definition of jet flavour
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else gets called a jet, in the “inclusive” version of the algo-
rithm).

The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:
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where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
minimum of k2

ti and some transverse scale associated with
the beam, k2

tB, which has never been explicitly needed so
far because it was always larger than any of the k2
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The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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else gets called a jet, in the “inclusive” version of the algo-
rithm).

The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:

d
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ij =(∆η2ij +∆φ2

ij)

×

{
max(k2

ti, k
2
tj) , softer of i, j is flavoured,

min(k2
ti, k

2
tj) , softer of i, j is flavourless,

(10)

where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
minimum of k2

ti and some transverse scale associated with
the beam, k2

tB, which has never been explicitly needed so
far because it was always larger than any of the k2

ti. The
analogue of (10) would then be to take

d
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iB =
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max(k2
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2
tB) , i is flavoured,

min(k2
ti, k
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tB) , i is flavourless.
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The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑
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ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,
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∑
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(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑
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kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
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* A closer look at the radiative corrections: combination

38



d�pp!VH+X!V bb̄+X =

" 1X

k=0

d�
(k)
pp!VH+X

#
⇥

"P1
k=0 d�

(k)
H!bb̄P1

k=0 �
(k)
H!bb̄

#
⇥Br(H ! bb̄)

d�
NLO(prod)+NLO(dec)

pp!VH+X!V bb̄+X
=

"
d�

(0)
pp!VH ⇥

d�(0)

H!bb̄
+ d�(1)

H!bb̄

�(0)

H!bb̄
+ �(1)

H!bb̄

+ d�
(1)
pp!VH+X ⇥

d�(0)

H!bb̄

�(0)

H!bb̄

#
⇥Br(H ! bb̄)

d�
NNLO(prod)+NLO(dec)

pp!VH+X!l⌫bb̄+X
=

"
d�

(0)
pp!VH ⇥

d�(0)

H!bb̄
+ d�(1)

H!bb̄

�(0)

H!bb̄
+ �(1)

H!bb̄

+
⇣
d�

(1)
pp!VH+X + d�

(2)
pp!VH+X

⌘
⇥

d�(0)

H!bb̄

�(0)

H!bb̄

#
⇥Br(H ! bb̄)

QCD corrections in the Narrow Width Approximation

Including up to NLO corrections

Including up to NNLO corrections for the production 
and up to NLO for the decay

Precise knowledge from YR1

(pp → VH)   (H → bb)⌦
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• inclusion of NLO(prod) x NLO(dec) contribution relevant 

40



* Results

41



W+ Z(νν)
at least 2 b jets

Setup and fiducial cross sections at LHC13

348 G. Ferrera et al. / Physics Letters B 780 (2018) 346–351

Table 1
Cross sections and their scale uncertainties for pp → V H + X → l1l2bb̄ + X at LHC 
with √s = 13 TeV. The applied kinematical cuts are described in the text.

σ (fb) NNLO(prod)+NLO(dec) full NNLO

pp → W + H + X → lνlbb̄ + X 3.94+1%
−1.5% 3.70+1.5%

−1.5%

pp → Z H + X → ννbb̄ + X 8.65+4.5%
−3.5% 8.24+4.5%

−3.5%

tons.3 However the standard jet clustering algorithms [42] do not 
provide an infrared and collinear safe definition of flavoured jets 
with massless quarks. In the present case, at NNLO, the splitting 
of a gluon in a soft or collinear (massless) bb̄ pair may affect the 
flavour of a jet. While the collinear unsafety can be removed by 
defining as a “b-jet” a jet containing a number of b quarks differ-
ent from the number of b̄ quarks, the definition of infrared safe 
b-jets using standard jet clustering algorithms is less trivial. In or-
der to deal with an infrared and collinear safe b-jet definition, we 
consider the so called flavour kT algorithm [43]. According to this 
algorithm, the definition of the kT -distance measure in the pres-
ence of flavoured partons (particles) is modified in such a way that 
the flavour of a jet is insensitive to soft parton emissions.

We now present numerical results for pp collisions at a cen-
tre–of–mass energy of 

√
s = 13 TeV. For the electroweak couplings, 

we use the Gµ scheme and the following input parameters: G F =
1.1663787 × 10−5 GeV−2, mZ = 91.1876 GeV, mW = 80.385 GeV, 
#Z = 2.4952 GeV, #W = 2.085 GeV, mt = 172 GeV and mb =
4.18 GeV.4 The mass and the width of the SM Higgs boson are 
set to mH = 125 GeV and #H = 4.070 MeV respectively, while the 
H → bb̄ branching ratio is set to Br(H → bb̄) = 0.578 [36].

As for the parton distribution functions (PDFs), we use the 
NNLO PDF4LHC set [44] with αS(mZ ) = 0.118. We set the renor-
malization and factorization scales to the dynamical value µR =
µF = MVH (i.e. the invariant mass of the VH system) and the renor-
malization scale for the H → bb̄ coupling to the value µr = mH . To 
assess the impact of scale variation, we fix µr = mH varying µR
and µF independently in the range MV H/2 ≤ {µR , µF } ≤ 2MV H , 
with the constraint 1/2 ≤ µR/µF ≤ 2. We then fix µR = µF =
MV H and vary the decay renormalisation scale µr between mH/2
and 2mH . The final uncertainty is obtained by taking the envelope 
of the two (production and decay) scale uncertainties. Jets are re-
constructed with the flavour-kT algorithm with R = 0.5 [43]. We 
define a b-jet as a jet which contains a number of b quarks differ-
ent from the number of anti-b quarks (N(b) ̸= N(b̄)).

We start the presentation of our results by considering W +H
production and decay at the LHC at 

√
s = 13 TeV. Our choice of 

kinematical selection cuts on the final states closely follows the 
fiducial setup considered in the CERN Yellow Report of the LHC Higgs 
Cross Section Working Group [46]. We require the charged lepton 
to have transverse momentum pl

T > 15 GeV and pseudorapidity 
|ηl| < 2.5 while the missing transverse energy of the event is re-
quired to be Emiss

T > 30 GeV. The W boson is required to have a 
transverse momentum pW

T > 150 GeV. Finally we require at least 
two b-jets each with pb

T > 25 GeV and |ηb| < 2.5. The correspond-
ing cross sections in the fiducial region are reported in the first 
row of Table 1, where we present the full NNLO prediction (see 
Eq. (2)) compared with the partial NNLO prediction (see Eq. (3)).5

We observe that the inclusion of the full NNLO corrections reduces 

3 Therefore, within our NNLO calculation, we have up to four b quarks in the final 
state.

4 We consider the pole mass for the top quark (mt ) and the M S scheme for the 
bottom quark mass mb = mb(mb).

5 The results for the case of W −H production and decay are qualitative similar, 
with a numerical reduction of fiducial cross section around 40%.

the cross section by around 6% with respect to the partial NNLO 
result.6

We next consider differential distributions. In Fig. 1 (left) we 
present the transverse-momentum distribution pbb

T of the leading 
b-jet pair (i.e. the two b-jets with largest pT ). In the lower panel 
we show the ratio of the two theoretical predictions defined above.

We observe that the additional α2
S corrections included in the 

full NNLO prediction have an important effect also on the shape
of the pbb

T distribution. In particular the cross section is increased 
by around 2–5% for pbb

T ! 140 GeV and it is decreased by around 
6–8% for pbb

T " 140 GeV. The corresponding K -factor, defined as 
the ratio between the full NNLO prediction in Eq. (2) and the par-
tial NNLO prediction in Eq. (3), is thus remarkably not constant 
(see the lower panel of Fig. 1 (left)). The qualitative behaviour of 
these effects is not unexpected. The additional QCD radiation in 
the Higgs boson decay, which is included in the full NNLO calcula-
tion, has the effect of decreasing the transverse-momentum of the 
leading b-jet pair, making the pbb

T distribution softer.
In Fig. 1 (right) we present the invariant mass distribution of 

the leading b-jet pair, Mbb . We consider again the comparison be-
tween the full NNLO QCD prediction in Eq. (2) and the partial
NNLO prediction in Eq. (3) and we show the ratio of the two 
predictions in the lower panel. For this observable the effect of 
the NNLO corrections to the decay rate are even more substan-
tial. While the position of the peak is rather stable around the 
value of the Higgs boson mass Mbb ≃ mH , the spectrum receives 
large positive corrections (up to +60%) for Mbb < mH and size-
able negative corrections (from −30% to −10%) for Mbb " mH . 
The large impact of these corrections can be understood by not-
ing that the leading order (LO) computation would produce an 
invariant mass distribution which exactly fulfils the constraint 
Mbb = mH . Higher-order corrections to the decay decrease the in-
variant mass of the leading b-jet pair. In the Mbb < mH region 
the partial NNLO prediction (which contains just the NLO correc-
tion to the decay rate) is effectively a first-order calculation and 
the next-order term is contained only in the full NNLO correction. 
Conversely, higher-order corrections to the production cross sec-
tion typically increase the invariant mass of the leading b-jet pair 
and the region Mbb > mH receives contributions only from partons 
emitted from the initial state. In this case the effect of the addi-
tional α2

S corrections contained in the full NNLO calculation has 
a sizeable but moderate impact with respect to the partial NNLO 
calculation.

As for the perturbative scale variation we have found that the 
scale dependence is dominated by the effect of the renormaliza-
tion scale of the decay process µr and is particularly small: at the 
1% level for the fiducial cross section. The scale variation of the 
“full” NNLO result is around ±5% in the case of pbb

T distribution
and around ±10% in the case of Mbb distribution. The scale depen-
dence of the “partial” NNLO result is quantitatively similar being 
significantly larger (around ±17%) only in the region Mbb < mH , 
where the “partial” NNLO result is a first-order calculation.

We observe that the uncertainty bands for the “partial” and 
“full” NNLO results fail to overlap for the fiducial cross section and 
in various regions of differential distributions.

We next turn to the case of ZH production and decay at the 
LHC at 

√
s = 13 TeV. We consider the invisible Z decay into neu-

trinos (Z → νν̄) and we require to have at least two b-jets each 
with pb

T > 25 GeV and |ηb| < 2.5 and a missing transverse energy 
Emiss

T > 150 GeV. The corresponding cross sections in the fiducial 

6 In particular we note that roughly 40% of the reduction is due to the combina-
tion of the NLO contributions for production and decay and 60% is due to the NNLO 
contributions to the decay rate (see Eq. (2) and subsequent comments).

scale variation is 
the convolution of:

mZ = 91.1876GeV

mW = 80.385GeV

wZ = 2.4952GeV

wW = 2.085GeV

Br(H ! bb̄) = 0.578

GF = 1.1663787 10�5GeV�2

mt = 172GeV

mH = 125GeV

µR = µF = MV H , mH/2  µr  2mH

jet-algorithm: flavorkt(0.5)

MV H/2  {µR, µF }  2MV H , µr = mH , 1/2  µR/µF  2{

plT > 15GeV

|⌘l| < 2.5

Emiss
T > 30GeV

pWT > 150GeV

pbT > 25GeV

|⌘b| < 2.5

Emiss
T > 150GeV

pbT > 25GeV

|⌘b| < 2.5
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W-H(bb) differential cross sections at LHC13 
also studied in
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Figure 11: Comparison of fixed order and parton shower predictions for the normalized invariant

mass distribution of the two b-jets used to reconstruct the Higgs boson. Left pane – without the

pW
?

cut, right pane – with the pW
?

> 150 GeV cut. Lower panes – ratio of parton shower to fixed

order predictions. See text for further details.

R = 0.5 for the jet radius.

As we have seen in the previous Section, radiative corrections to kinematic distributions in

the pp ! WH(bb̄) process exhibit non-trivial patterns, partially because of selection criteria

that are applied to final state particles. In particular, large effects are observed for values

of the mbb̄ invariant mass that are far from the value of the Higgs boson mass, or for values

of the transverse momenta of the bb̄ system or the leading b-jet that are below the cut on

the transverse momentum of the W boson. All these kinematic regions have one thing in

common – they are not populated at all if leading-order predictions are used. Hence, they

require additional QCD radiation either in the production process or in the decay of the

Higgs boson.

Moreover, some of these regions, e.g. p
?,bb̄ ⇠ pcut

?,W or hardest p
?,b ! 0, are close to kinematic

boundaries where parton showers are known to accurately describe radiation effects. Other

regions and observables, for example the case mbb̄ < mH require a relatively hard gluon

emission and it is unclear a priori if parton showers do a good job in describing them.

As in the previous Section, we study the b and b̄ jets whose invariant mass mbb̄ is closest to

the Higgs mass. We show a comparison of the NNLO and parton shower predictions for the

mbb̄ distribution in Fig. 11, for the transverse momentum distribution of the bb̄ system in

Fig. 12, and for the hardest b (or b̄) jet p
?

distribution in Fig. 13. In all of these cases, the
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Figure 12: Same as Fig. 11 but for the transverse momentum of the bb̄ system that is used to

reconstruct the Higgs boson. See text for further details.

Figure 13: Same as Fig. 11 but for the hardest b (or b̄) jet. See text for further details.

distributions are normalized to their inclusive result so that their shapes can be compared.

However, we note that, while the fixed order and parton shower results use the same jet

radius, the former makes use of the flavor-kt jet algorithm while the latter uses the standard

anti-kt algorithm, and therefore the comparison between the two is not straightforward. We

will return to this point at the end of this Section.

For the mbb̄ distribution, we observe that the parton shower does quite a good job in de-

scribing the NNLO corrections, although it predicts more events at both low and high values

of mbb̄. Interestingly, the parton shower smears the peak at mbb̄ = mH more significantly in

the case where the p
?,W cut is not applied. When this cut is imposed, the parton shower

predicts fewer events at the peak but the smearing effect is not as dramatic.
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Figure 14: The invariant mass of a b-jet and a b̄-jet that best approximates the Higgs boson mass,

obtained from parton shower simulations with different jet algorithms and radii. Left pane – without

the pW
?

cut, right pane – with the pW
?

> 150 GeV cut. Lower panes – ratio of results for the kt and

anti-kt jet algorithms with R = {0.4, 0.5} to the result for the flavor-kt jet algorithm with R = 0.5.

See text for further details.

Turning to the p
?,bb̄ distribution, we observe that the parton shower is able to describe the

NNLO distributions quite well. When the pW
?

cut is not imposed, the parton shower predic-

tion is in excellent agreement with the fixed order one, except in the very high transverse

momentum region. However, there is a difference at low p
?,bb̄ if the pW

?

cut is applied, with

the parton shower predicting more events in this region than the fixed order calculation. As

expected, the parton shower also removes the Sudakov shoulder in this distribution that was

observed in both the approximate and the full NNLO distributions.

Next, in Fig. 13 we show the p
?

distribution of the b- (or b̄-) jet with largest transverse

momentum. Without the cut on pW
?

, the NNLO and shower results are similar, although the

latter predicts slightly more events at large p
?

. On the other hand, if the cut pW
?

> 150 GeV

is imposed, the fixed order and shower calculations deviate significantly at small p
?

. Large

shower effects in this region are expected, since as we have shown in Section V, the fixed

order predictions are not reliable here.

Given the different jet algorithms used in the fixed order and parton shower calculations, it

is interesting to investigate to what extent the details of the jet definition affect these results.

In Figs. 14 and 15, we show the invariant mass mbb̄ and transverse momentum distribution

p
?,bb̄, obtained from the parton shower simulation for different choices of the jet algorithm
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Figure 15: Same as Fig. 14 but for the transverse momentum of the bb̄ system that is used to

reconstruct the Higgs boson. See text for further details.

and radius. We compare the flavor-kt jet algorithm [46] with both the kt [55] and anti-kt [54]

algorithms. For the invariant mass distribution, Fig. 14 shows that both with and without

the pW
?

> 150 GeV cut the result is quite insensitive to the recombination algorithm, and it

only depends on the choice of the jet radius: smaller values of R lead to more events below

the Higgs peak. For the p
?,bb̄ on the other hand, Fig. 15 shows that without the pW

?

cut

all jet algorithms and radii lead to the same result, apart from the high p
?,bb̄ tail where the

flavor-kt jet algorithm [46] predicts fewer events compared to the kt and anti-kt cases. With

the additional pW
?

> 150 GeV cut, a qualitative dependence on the jet radius similar to the

one seen in the mbb̄ distribution is observed: smaller values of R lead to a softer spectrum.

VII. CONCLUSIONS

In this paper we presented a computation of the NNLO QCD corrections to the associated

production of the Higgs boson pp ! WH at the LHC. We considered the H ! bb̄ decay of the

Higgs boson and included radiative corrections to this decay through NNLO in perturbative

QCD.

We pointed out an interesting contribution to Higgs decay to bb̄ pairs that was ignored

in previous fully-differential NNLO QCD computations to this process. This contribution

is infrared-sensitive even after standard jets algorithms are applied and understanding it

necessitates the computation of fully-differential NNLO corrections to the H ! bb̄ decay
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W-H(bb) differential cross sections at LHC13 
also studied in
• study of the impact of the jet algorithm

[Caola,Luisoni, Melnikov, Röntsch 2017]
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Conclusion 
✴ Event generation in good shape: NNLO+nloPS in the making, NLOQCD+EW+PS 

available 

✴ Although still not real progress on ggZH@NLO 

✴ Calculation of NNLO QCD corrections to VH production with nnlo QCD H → bb 
decay in hadron collision included in a fully-exclusive parton level Monte Carlo code        
[Ferrera, Somogyi, Tramontano 1705.10304] 

✴ Independent computation with totally different techniques recently completed and 
excellent agreement found [Caola,Luisoni, Melnikov, Röntsch 1712.06954] 

✴ first reliable estimate of perturbative uncertainty available 

Outlook/Work in progress 
✴ Public release of the HVNNLO parton-level numerical code 

✴ Inclusion of other Higgs boson decay channels, es. H → WW/ZZ → 2l2ν/4l decay 

✴ Extension to the case of Higgs decay to massive b quarks @NNLO
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