A NNLO QCD study of diphoton production at the LHC

Giancarlo Ferrera

Milan University & INFN Milan

Indian Institute of Technology Hyderabad – March 1st 2018

Based on:

S. Catani, L. Cieri, D. de Florian, G.F. & M. Grazzini, arXiv:1110.2375 & 1802.02095

Motivations

Photon pairs or *diphotons* ($\gamma\gamma$) production at high invariant mass ($M_{\gamma\gamma}$) very relevant at hadron colliders.

- Experimentally very clean finale states. Photon energies/momenta measured with high precision.
- Photons not interact strongly: ideal probes for study Standard Model (SM) interactions.
- At the LHC diphotons final states played a crucial role in the Higgs boson discovery $(H \rightarrow \gamma \gamma)$.
- Diphotons measurements important in searches for physics beyond the SM.

The above reasons and precise experimental LHC data demands for accurate theoretical predictions \Rightarrow computation of higher-order QCD corrections.

Motivations

Photon pairs or *diphotons* ($\gamma\gamma$) production at high invariant mass ($M_{\gamma\gamma}$) very relevant at hadron colliders.

- Experimentally very clean finale states. Photon energies/momenta measured with high precision.
- Photons not interact strongly: ideal probes for study Standard Model (SM) interactions.
- At the LHC diphotons final states played a crucial role in the Higgs boson discovery $(H \rightarrow \gamma \gamma)$.
- Diphotons measurements important in searches for physics beyond the SM.

The above reasons and **precise experimental LHC data** demands for **accurate theoretical predictions** \Rightarrow **computation of higher-order QCD corrections**.

Motivations: Higgs boson studies

Precise measurements of the Higgs boson properties is a central issue in collider physics.

For $m_H \lesssim 140$ GeV the preferred search mode at the LHC is:

$$\mathbf{gg}
ightarrow \mathbf{H} + \mathbf{X}
ightarrow \gamma \gamma + \mathbf{X}$$

$\mathbf{pp} \rightarrow \gamma \gamma + \mathbf{X}$ is the main irreducible background.

Motivations: beyond the SM searches

Diphoton measurements important in many new-physics scenarios (e.g. searches for extra dimensions or supersymmetry).

In 2015 observation by ATLAS and CMS (2015) of an excess of events (bump) in the $M_{\gamma\gamma}\simeq 750$ GeV region.

Excess disappeared (2016) with higher statistics data samples.

It raised a great deal of attention (bubble) from theorist:

 $\mathcal{O}(10^2)$ of papers, $\mathcal{O}(10^4)$ citations in six months...

Giancarlo Ferrera – Milan University & INFN A NNLO QCD study of diphoton production at the LHC

Photon production

- PRIMARY or PROMPT photons
 - DIRECT photons
 Directly produced in the hard scattering
 - FRAGMENTATION photons Collinear fragmentation of partons into photons

Only the sum of Direct + Fragmentation component has a physical meaning, given a proper factorization scheme (e.g. \overline{MS}) $\sigma = \sigma_{\gamma}(M_F^2) + \Sigma$

 $D_{a/\gamma}(M_F^2)$ Fragmentation function of a parton p in a γ : non-perturbative initial condition + Altarelli-Parisi perturbative evolution.

SECONDARY (NON PROMPT) photons From decays of hadrons (π⁰, η) at large p_T or faked by jets.
 Several order of magnitude larger than PROMPT photons

 \Rightarrow Photon isolation is necessary to enhance signal-background ratio

pQCD(+PDFs)

Photon production

- PRIMARY or PROMPT photons
 - DIRECT photons
 Directly produced in the hard scattering
 - FRAGMENTATION photons Collinear fragmentation of partons into photons

Only the sum of Direct + Fragmentation component has a physical meaning, given a proper factorization scheme (e.g. \overline{MS})

 $\sigma = \sigma_{\gamma}(M_F^2) + \sum_{p} \sigma_{p}(M_F^2) \otimes D_{p/\gamma}(M_F^2)$

pQCD(+PDFs)

 $D_{a/\gamma}(M_F^2)$ Fragmentation function of a parton p in a γ : non-perturbative initial condition + Altarelli-Parisi perturbative evolution.

 \Rightarrow Photon isolation is necessary to enhance signal-background ratio

Photon production

- PRIMARY or PROMPT photons
 - DIRECT photons
 Directly produced in the hard scattering
 - FRAGMENTATION photons Collinear fragmentation of partons into photons

Only the sum of Direct + Fragmentation component has a physical meaning, given a proper factorization scheme (e.g. \overline{MS})

$$\sigma = \sigma_{\gamma}(M_F^2) + \sum_{p} \sigma_{p}(M_F^2) \otimes D_{p/\gamma}(M_F^2)$$

pQCD(+PDFs)

 $D_{a/\gamma}(M_F^2)$ Fragmentation function of a parton p in a γ : non-perturbative initial condition + Altarelli-Parisi perturbative evolution.

• SECONDARY (NON PROMPT) photons From decays of hadrons (π^0, η) at large p_T or faked by jets.

Several order of magnitude larger than PROMPT photons

 \Rightarrow Photon isolation is necessary to enhance signal-background ratio

- Standard Cone: in a cone of radius R around \mathbf{p}_{γ} the hadronic transverse energy $E_T^{had}(R) \equiv \sum_i E_{T_i}^{had} \Theta(R R_{i\gamma})$ (with $R_{i\gamma} = \sqrt{(y_i y_{\gamma})^2 + (\phi \phi_{\gamma})^2}$) $E_T^{had}(R) \leq E_{T_{max}}$
 - Solution Not possible to set $E_{T_{max}} = 0$ (to kill fragmentation component): it is not Infrared Safe (soft gluons cannot be emitted inside the cone).
- Smooth Cone[Frixione('98)]: for ALL cones with radius r < R around \mathbf{p}_{γ}

 $E_T^{had}(r) \leq E_{T_{max}} \chi(r; R) \stackrel{r \to 0}{\longrightarrow} 0$

- It is Infrared Safe (soft gluons can always be emitted inside the cone).
- Completely kill (poorly known) Fragmentation component.
- ${igodol}$ Direct component well defined (no parton-photon collinear divergences).
- ${}^{\mathfrak S}$ Not easy to implement (a discrete version) in experimental analyses.

If isolation tight enough NLO QCD predictions with standard and smooth cone are similar (differences smaller than perturbative uncertainties).

• Standard Cone: in a cone of radius R around \mathbf{p}_{γ} the hadronic transverse energy $E_T^{had}(R) \equiv \sum_i E_{T_i}^{had} \Theta(R - R_{i\gamma})$ (with $R_{i\gamma} = \sqrt{(y_i - y_{\gamma})^2 + (\phi - \phi_{\gamma})^2}$) $E_T^{had}(R) \leq E_{T_{max}}$

Solution Not possible to set $E_{T_{max}} = 0$ (to kill fragmentation component): it is not Infrared Safe (soft gluons cannot be emitted inside the cone).

• Smooth Cone[Frixione('98)]: for ALL cones with radius r < R around \mathbf{p}_{γ}

$$E_T^{had}(r) \leq E_{T_{max}} \chi(r; R) \stackrel{r \to 0}{\longrightarrow} 0$$

Ut is Infrared Safe (soft gluons can always be emitted inside the cone).

🙂 Completely kill (poorly known) Fragmentation component.

🙂 Direct component well defined (no parton-photon collinear divergences).

😢 Not easy to implement (a discrete version) in experimental analyses.

If isolation tight enough NLO QCD predictions with standard and smooth cone are similar (differences smaller than perturbative uncertainties).

• Standard Cone: in a cone of radius R around \mathbf{p}_{γ} the hadronic transverse energy $E_T^{had}(R) \equiv \sum_i E_{T_i}^{had} \Theta(R - R_{i\gamma})$ (with $R_{i\gamma} = \sqrt{(y_i - y_{\gamma})^2 + (\phi - \phi_{\gamma})^2}$) $E_T^{had}(R) \leq E_{T_{max}}$

Solution Not possible to set $E_{T_{max}} = 0$ (to kill fragmentation component): it is not Infrared Safe (soft gluons cannot be emitted inside the cone).

• Smooth Cone[Frixione('98)]: for ALL cones with radius r < R around \mathbf{p}_{γ}

$$E_T^{had}(r) \leq E_{T_{max}} \chi(r; R) \stackrel{r \to 0}{\longrightarrow} 0$$

It is Infrared Safe (soft gluons can always be emitted inside the cone).

🙂 Completely kill (poorly known) Fragmentation component.

🙂 Direct component well defined (no parton-photon collinear divergences).

🙁 Not easy to implement (a discrete version) in experimental analyses.

If isolation tight enough NLO QCD predictions with standard and smooth cone are similar (differences smaller than perturbative uncertainties).

Shapes $\chi(r; R)$ for various values of power *n* and R = 0.4.

Physical constraints:

- $d\sigma_{\text{smooth}}(R; E_{T_{max}}) < d\sigma_{\text{standard}}(R; E_{T_{max}})$,
- $d\sigma_{is}(R; E_{T_{max}})$ monotonically decreases as $E_{T_{max}}$ decreases (R fixed),
- $d\sigma_{is}(R; E_{T_{max}})$ monotonically increases as R decreases $(E_{T_{max}} \text{ fixed})$,
- $d\sigma_{\text{smooth}}(R; E_{T_{max}}; n)$ monotonically decreases as *n* increases (*R* and $E_{T_{max}}$ fixed),

Diphoton production

- DIPHOX: NLO QCD for Direct and Fragmentation contributions + part of NNLO (gg → γγ Box) [Binoth,Guillet,Pilon,Werlen('99)].
- gamma2MC: NLO QCD for Direct contribution + part of NNLO ($gg \rightarrow \gamma\gamma$ Box) + part of N³LO (corrections to $gg \rightarrow \gamma\gamma$ Box) [Bern,Dixon,Schmidt('02)].
- MCFM: LO QCD for Fragmentation contribution + NLO QCD for Direct contribution + part of NNLO ($gg \rightarrow \gamma\gamma$ Box) + part of N³LO (corrections to $gg \rightarrow \gamma\gamma$ Box) [Campbell,Ellis,Williams('11)].
- NNLL q_T resummation implemented in ResBos [Balazs,Berger,Nadolsky,Yuan ('07)] and in 2γRes [Cieri,Coradeschi,deFlorian('15)].
- Lowest order EW corrections computed by [Bierweiler et al.('13)] and [Chiesa et al.('17)]

Diphoton production at NNLO QCD

A complete NNLO in QCD ($\mathcal{O}(\alpha_s^2)$) calculation of both direct and fragmentation components not available.

Fragmentation component absent by considering smooth cone isolation. Only direct component needed.

- 2\U007NNLO: first full NNLO QCD calculation for Direct contribution [Catani,Cieri,deFlorian,G.F.,Grazzini ('11)] performed within qT subtraction formalism (independently implemented in the MATRIX generator [Grazzini,Kallweit,Wiesamann('17)]).
- Independent NNLO QCD calculation for direct contribution within *N*-jettiness subtraction performed by [Campbell,Ellis,Li,Williams('16)].

The q_T -subtraction formalism at NNLO

 $h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani,Grazzini('07)]. \bar{q}

• Key point I: at LO the q_T of the V is exactly zero.

 $d\sigma^V_{(N)NLO}|_{q_{\mathcal{T}}
eq 0} = d\sigma^{V+ ext{jets}}_{(N)LO} \; ,$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini (²00)].

$$d\sigma_{N^nLO}^V \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2 = d\sigma_{LO}^V \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2^n} \left(\frac{\alpha_S}{\pi}\right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2 q_T$$
$$d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2$$

The q_T -subtraction formalism at NNLO

$$h_1(p_1) + h_2(p_2) \rightarrow V(M, \mathbf{q}_T) + X$$

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani,Grazzini('07)]. \bar{q}

• Key point I: at LO the q_T of the V is exactly zero.

$$d\sigma^V_{(N)NLO}|_{q_T \neq 0} = d\sigma^{V+\text{jets}}_{(N)LO}$$
 ,

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

• The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.

 Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini (²00)].

 $d\sigma_{N^nLO}^V \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2 = d\sigma_{LO}^V \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_S}{\pi}\right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2 q_T$ $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2$

The q_T -subtraction formalism at NNLO

$$h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$$

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani,Grazzini('07)]. \bar{q}

• Key point I: at LO the q_T of the V is exactly zero.

$$d\sigma^V_{(N)NLO}|_{q_T\neq 0} = d\sigma^{V+\rm jets}_{(N)LO} \ , \label{eq:dsigma}$$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$d\sigma_{N^nLO}^V \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2 = d\sigma_{LO}^V \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_S}{\pi}\right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2 q_T$$
$$\frac{d\sigma^{CT}}{d\sigma} \xrightarrow{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2$$

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where $\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \mathcal{H}^{V(2)} \right]$

• The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.

- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while *two-loops virtual* corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where $\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \mathcal{H}^{V(2)} \right]$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where $\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \mathcal{H}^{V(2)} \right]$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where $\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \mathcal{H}^{V(2)} \right]$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

- A NLO calculation requires:

 - dσ_{LO}^{V+jets} (and dσ_{LO}^V).
 H^{V(1)} [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{LO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation requires also:
 - $d\sigma_{NIO}^{V+\text{jets}}$.
 - $\mathcal{H}^{V(2)}$: contains the finite-part of the two-loops amplitude $c\overline{c} \rightarrow V$.
 - $d\sigma_{MO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- Diphoton production at NNLO within q_T -subtraction:
 - $d\sigma_{NIO}^{\gamma\gamma+\text{jets}}$: [Del Duca, Maltoni, Nagy, Trocsany('03), NLOJet++].
 - $\mathcal{H}^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, G.F., Grazzini], and two-loops amplitude

- A NLO calculation requires:

 - dσ_{LO}^{V+jets} (and dσ_{LO}^V).
 H^{V(1)} [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{LO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation requires also:
 - $d\sigma_{\rm MLO}^{\rm V+jets}$.
 - $\mathcal{H}_{V(2)}^{NLO}$: contains the finite-part of the two-loops amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{NLO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- Diphoton production at NNLO within q_T -subtraction:
 - $d\sigma_{\text{MIC}}^{\gamma\gamma+\text{jets}}$: [Del Duca, Maltoni, Nagy, Trocsany('03), NLOJet++].
 - $\mathcal{H}^{\gamma\gamma(2)}$ [Catani,Cieri,de Florian,G.F.,Grazzini], and two-loops amplitude

- A NLO calculation requires:

 - dσ_{LO}^{V+jets} (and dσ_{LO}^V).
 H^{V(1)} [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{LO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation requires also:
 - $d\sigma_{\rm MLO}^{\rm V+jets}$.
 - $\mathcal{H}^{V(2)}$: contains the finite-part of the two-loops amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{MO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- Diphoton production at NNLO within q_T -subtraction:
 - $d\sigma_{NLO}^{\gamma\gamma+\text{jets}}$: [Del Duca, Maltoni, Nagy, Trocsany('03), NLOJet++].
 - $\mathcal{H}^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, G.F., Grazzini], and two-loops amplitude for $c\bar{c} \rightarrow \gamma\gamma$ [Anastasiou, Glover, Tejeda-Yeomans('02)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte Carlo code: 27NNLO [Catani, Cieri, de Florian, G.F., Grazzini ('11)].

The q_T -subtraction formalism cannot deal with IR divergences in the final state \Rightarrow we rely on Frixione smooth cone isolation (no Fragmentation component) and we calculated the fully exclusive NNLO corrections for Direct component. Higher order corrections known to be very large:

Box contribution (part of NNLO) large as Born [Dicus, Willenbrock('88)]. Important to have a full control of all the NNLO ($\mathcal{O}(\alpha_5^2)$) contributions:

The q_T -subtraction formalism cannot deal with IR divergences in the final state \Rightarrow we rely on Frixione smooth cone isolation (no Fragmentation component) and we calculated the fully exclusive NNLO corrections for Direct component. Higher order corrections known to be very large:

Box contribution (part of NNLO) large as Born [Dicus, Willenbrock('88)]. Important to have a full control of all the NNLO ($\mathcal{O}(\alpha_5^2)$) contributions:

The q_T -subtraction formalism cannot deal with IR divergences in the final state \Rightarrow we rely on Frixione smooth cone isolation (no Fragmentation component) and we calculated the fully exclusive NNLO corrections for Direct component. Higher order corrections known to be very large:

Box contribution (part of NNLO) large as Born [Dicus, Willenbrock('88)]. Important to have a full control of all the NNLO ($\mathcal{O}(\alpha_5^2)$) contributions:

Fiducial cross sections at LO and NLO

Kinematical cuts (ATLAS): $p_{T\gamma}^{\text{hard}} \ge 25 \text{ GeV}, p_{T\gamma}^{\text{soft}} \ge 22 \text{ GeV}, |y_{\gamma}| < 2.37, R_{\gamma\gamma}^{\min} = 0.4.$ Set up: $\alpha = 1/137$, MMHT 2014 PDFs, BFG-II photon Frag. Funct., Scale choice: $\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv M_{\gamma\gamma}$ Scale variations: { $\mu_R = \mu_0/2, \mu_F = \mu_{frag} = 2\mu_0$ } and { $\mu_R = 2\mu_0$, $\mu_F = \mu_{frag} = \mu_0/2$ } (equivalent to independent variation by a factor 2). Isolation: R = 0.4, n = 1.

		$\sigma^{ m NLO}$ (pb)		$\sigma^{ m NLO}$ (pb)
Standard		$31.1 \begin{array}{c} ^{+12.8\%}_{-12.3\%}$		$33.3 \begin{array}{c} ^{+12.3\%}_{-11.3\%}$
[direct]		$27.30 {}^{+7.8\%}_{-9.2\%}$		$18.45 {}^{-10.3\%}_{+3.8\%}$
Smooth		$31.92 {}^{+12.6\%}_{-12.1\%}$		$33.91 {}^{+13.0\%}_{-12.6\%}$

Fiducial cross sections at LO and NLO

Kinematical cuts (ATLAS): $p_{T\gamma}^{\text{hard}} \ge 25 \text{ GeV}, p_{T\gamma}^{\text{soft}} \ge 22 \text{ GeV}, |y_{\gamma}| < 2.37, R_{\gamma\gamma}^{\min} = 0.4.$ Set up: $\alpha = 1/137$, MMHT 2014 PDFs, BFG-II photon Frag. Funct., Scale choice: $\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv M_{\gamma\gamma}$ Scale variations: { $\mu_R = \mu_0/2, \mu_F = \mu_{frag} = 2\mu_0$ } and { $\mu_R = 2\mu_0$, $\mu_F = \mu_{frag} = \mu_0/2$ } (equivalent to independent variation by a factor 2). Isolation: R = 0.4, n = 1.

	$E_{T_{max}} = 2 \text{ GeV}$		$E_{T_{max}} = 10 { m GeV}$	
	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)
Standard	$12.15 \begin{array}{c} +14.5 \% \\ -14.3 \% \end{array}$	$31.1 {}^{+12.8\%}_{-12.3\%}$	$19.51 {}^{+25.0\%}_{-20.8\%}$	$33.3 \ {}^{+12.3 \%}_{-11.3 \%}$
[direct]	$10.56 {}^{+10.7\%}_{-12.0\%}$	$27.30 {}^{+7.8\%}_{-9.2\%}$	$10.56 {}^{+10.7\%}_{-12.0\%}$	$18.45 {}^{-10.3\%}_{+3.8\%}$
Smooth	$10.56 {}^{+10.7\%}_{-12.0\%}$	$31.92 {}^{+12.6\%}_{-12.1\%}$	$10.56 {}^{+10.7\%}_{-12.0\%}$	$33.91 {}^{+13.0\%}_{-12.6\%}$

Fiducial cross sections at LO and NLO

Kinematical cuts (ATLAS): $p_{T\gamma}^{\text{hard}} \ge 25 \text{ GeV}, p_{T\gamma}^{\text{soft}} \ge 22 \text{ GeV}, |y_{\gamma}| < 2.37, R_{\gamma\gamma}^{\min} = 0.4.$ Set up: $\alpha = 1/137$, MMHT 2014 PDFs, BFG-II photon Frag. Funct., Scale choice: $\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv M_{\gamma\gamma}$ Scale variations: { $\mu_R = \mu_0/2, \mu_F = \mu_{frag} = 2\mu_0$ } and { $\mu_R = 2\mu_0$, $\mu_F = \mu_{frag} = \mu_0/2$ } (equivalent to independent variation by a factor 2). Isolation: R = 0.4, n = 1.

	$E_{T_{max}} = 2 \text{ GeV}$		$E_{T_{max}} = 10 { m GeV}$	
	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)
Standard	$12.15 \begin{array}{c} ^{+14.5\%}_{-14.3\%}$	$31.1 {}^{+12.8\%}_{-12.3\%}$	$19.51 \begin{array}{c} ^{+25.0\%}_{-20.8\%}$	$33.3 \ {}^{+12.3 \%}_{-11.3 \%}$
[direct]	$10.56 \ ^{+10.7\%}_{-12.0\%}$	$27.30 {}^{+7.8\%}_{-9.2\%}$	$10.56 {}^{+10.7\%}_{-12.0\%}$	$18.45 {}^{-10.3\%}_{+3.8\%}$
Smooth	$10.56 \ ^{+10.7\%}_{-12.0\%}$	$31.92 {}^{+12.6\%}_{-12.1\%}$	$10.56 {}^{+10.7\%}_{-12.0\%}$	$33.91 {}^{+13.0\%}_{-12.6\%}$

NLO total cross section (with scale variation), for the standard (red line and band) and smooth (black error bars) isolation with $E_{T_{max}} = 2$ GeV (left panel) and 10 GeV (right panel). For smooth cone isolation, various powers of n (n = 0.1, 0.2, 0.5, 1, 2, 4) in the isolation function $\chi(r; R) = (r/R)^{2n}$ are considered.

Analytic behaviour of NLO correction for smooth cone isolation in the $n \gg 1$ (soft) and $n \ll 1$ (collinear limit).

$$\begin{split} & \delta_{\rm smooth}^{NLO, \rm soft} \quad \propto \quad -\alpha_{5} \, R^{2} \left(\ln \left(\frac{Q}{E_{T_{max}}} \right) + n \right) \;, \quad (n \gg 1) \;, \\ & \delta_{\rm smooth}^{NLO, \rm coll} \quad \propto \quad + \frac{\alpha_{5}}{n} \; \frac{E_{T_{max}}}{Q} \;, \qquad \qquad (n \ll 1) \;. \end{split}$$

The $M_{\gamma\gamma}$ differential cross section for $E_{T_{max}} = 2$ GeV (left) and $E_{T_{max}} = 10$ GeV (right) at LO and NLO including scale variation bands.

The $\cos \theta^*$ differential cross section for $E_{T_{max}} = 2 \text{ GeV}$ (left) and $E_{T_{max}} = 10 \text{ GeV}$ (right) at LO and NLO including scale variation bands. Where θ^* is the photon polar angle in the Collins-Soper rest frame of the diphoton system.

The NLO results (scale variation bands) for the $\Delta \Phi_{\gamma\gamma}$ differential cross section that are obtained by using the smooth (red solid band) and standard (blue dashed band) cone isolation criteria with $E_{T_{max}} = 2$ GeV (left) and $E_{T_{max}} = 10$ GeV (right).

The NLO results (scale variation bands) for the $p_{T\gamma\gamma}$ differential cross section that are obtained by using the smooth (red solid band) and standard (blue dashed band) cone isolation criteria with $E_{T_{max}} = 2$ GeV (left) and $E_{T_{max}} = 10$ GeV (right).

The cos θ^* differential cross section for standard cone isolation with two different values of $E_{T_{max}}$ (2 GeV and 10 GeV). The QCD results are obtained at the central value of the scales ($\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv M_{\gamma\gamma}$). The results with NLO direct + LO fragmentation components (left) use BFG and GdRG_LO fragmentation functions. The NLO results (right) use BFG fragmentation functions.

The differential cross section $d\sigma/dM_{\gamma\gamma}$ for smooth isolation with $E_{T_{max}} = 10$ GeV. The LO (black solid) and NLO (red dashed) numerical results use $M_{\gamma\gamma}$ bins with constant size of 0.1 GeV. At both perturbative orders, the maximum and minimum values of $d\sigma/dM_{\gamma\gamma}$ correspond to the scale choices { $\mu_R = M_{\gamma\gamma}/2, \mu_F = 2M_{\gamma\gamma}$ } and { $\mu_R = 2M_{\gamma\gamma}, \mu_F = M_{\gamma\gamma}/2$ }, respectively.

Fiducial cross sections at NNLO

Kinematical cuts (ATLAS): $p_{T\gamma}^{\text{hard}} \geq 25 \text{ GeV}$, $p_{T\gamma}^{\text{soft}} \geq 22 \text{ GeV}$, $|y_{\gamma}| < 1.37$ and $1.52 < |y_{\gamma}| \leq 2.37$, $R_{\gamma\gamma}^{\min} = 0.4$.

Set up: $\alpha = 1/137$, MMHT 2014 PDFs,

Scale choice:
$$\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv \sqrt{M_{\gamma\gamma}^2 + p_{T\gamma\gamma}^2} = M_{T\gamma\gamma}$$

Scale variations: { $\mu_R = \mu_0/2$, $\mu_F = \mu_{frag} = 2\mu_0$ } and { $\mu_R = 2\mu_0$, $\mu_F = \mu_{frag} = \mu_0/2$ } (equivalent to independent variation by a factor 2). Isolation ATLAS: cone isolation R = 0.4 and $E_{T_{max}} = 4$ GeV. Isolation NNLO: smooth cone isolation R = 0.4 and $E_{T_{max}} = 4$ GeV.

	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)	$\sigma^{ m NNLO}$ (pb)
<i>n</i> ind.	$9.293 {}^{+10.9\%}_{-11.9\%}$		
<i>n</i> = 0.5		$29.40 {}^{+12.8\%}_{-12.4\%}$	40.98(68) ^{+8.3} %
n = 1		$28.55 \begin{array}{c} +12.5 \ \% \\ -12.2 \ \% \end{array}$	$39.50(50) \stackrel{+7.9\%}{_{-8.4\%}}$
<i>n</i> = 2		$27.98 \ ^{+12.3}_{-11.9}\%$	$37.53(52) \stackrel{+7.0\%}{_{-7.8\%}}$

Results for LO, NLO and NNLO total cross sections.

Fiducial cross sections at NNLO

Kinematical cuts (ATLAS): $p_{T\gamma}^{\text{hard}} \geq 25 \text{ GeV}$, $p_{T\gamma}^{\text{soft}} \geq 22 \text{ GeV}$, $|y_{\gamma}| < 1.37$ and $1.52 < |y_{\gamma}| \leq 2.37$, $R_{\gamma\gamma}^{\min} = 0.4$.

Set up: $\alpha = 1/137$, MMHT 2014 PDFs,

Scale choice:
$$\mu_F = \mu_R = \mu_{frag} = \mu_0 \equiv \sqrt{M_{\gamma\gamma}^2 + p_{T\gamma\gamma}^2} = M_{T\gamma\gamma}$$

Scale variations: { $\mu_R = \mu_0/2$, $\mu_F = \mu_{frag} = 2\mu_0$ } and { $\mu_R = 2\mu_0$, $\mu_F = \mu_{frag} = \mu_0/2$ } (equivalent to independent variation by a factor 2). Isolation ATLAS: cone isolation R = 0.4 and $E_{T_{max}} = 4$ GeV. Isolation NNLO: smooth cone isolation R = 0.4 and $E_{T_{max}} = 4$ GeV.

	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)	$\sigma^{ m NNLO}$ (pb)
<i>n</i> ind.	$9.293 {}^{+10.9\%}_{-11.9\%}$		
<i>n</i> = 0.5		$29.40 {}^{+12.8\%}_{-12.4\%}$	40.98(68) ^{+8.3} %
n = 1		$28.55 \begin{array}{c} ^{+12.5\%}_{-12.2\%}$	$39.50(50) \stackrel{+7.9\%}{_{-8.4\%}}$
<i>n</i> = 2		$27.98 \ _{-11.9 \ \%}^{+12.3 \ \%}$	$37.53(52) \stackrel{+7.0\%}{_{-7.8\%}}$

Results for LO, NLO and NNLO total cross sections.

The differential cross section $d\sigma/dM_{\gamma\gamma}$. LO, NLO and NNLO results with scale dependence and NNLO K factor with scale dependence (left). Decomposition in the contributions of different initial-state partonic channels: $q\bar{q}$, qg, gg and the box $gg \rightarrow \gamma\gamma$ (right).

The differential cross section $d\sigma/d\cos\theta^*$.. LO, NLO and NNLO results with scale dependence and NNLO K factor with scale dependence (left). Decomposition in the contributions of different initial-state partonic channels: $q\bar{q}$, qg, gg and the box $gg \rightarrow \gamma\gamma$ (right).

The differential cross sections $d\sigma/d\Delta\Phi_{\gamma\gamma}$ (left) and $d\sigma/dp_{T\gamma\gamma}$ (right). LO, NLO and NNLO results with scale dependence and NNLO K factor with scale dependence.

Comparison between ATLAS data at $\sqrt{s} = 7$ TeV and NNLO results (with scale dependence) for $d\sigma/dM_{\gamma\gamma}$ (left) and $d\sigma/d\cos\theta^*$ (right). The NNLO results are corrected for hadronization and underlying event effects.

Comparison between ATLAS data at $\sqrt{s} = 7$ TeV and NNLO results (with scale dependence) for $d\sigma/d\Delta\Phi_{\gamma\gamma}$ (left) and $d\sigma/dp_{T\gamma\gamma}$ (right). The NNLO results are corrected for hadronization and underlying event effects.

Comparison between ATLAS data at $\sqrt{s} = 7$ TeV with NLO (DIPHOX+GAMMA2MC) and NNLO (2 γ NNLO) results (with scale dependence) for $d\sigma/dM\gamma\gamma$ (left) and $d\sigma/dp_{T\gamma\gamma}$ (right).

Comparison between ATLAS data at $\sqrt{s} = 7$ TeV with NLO (DIPHOX+GAMMA2MC) and NNLO (2 γ NNLO) results (with scale dependence) for $\cos \theta^*$ (left) and $d\sigma/\Delta\Phi_{\gamma\gamma}$ (right).

Conclusions

- Detailed study on differences between standard and smooth cone isolation up to NLO: results are consistent within the corresponding scale uncertainties.
- Smooth cone isolation: consistent theoretical framework for NNLO calculation.
- First calculation of full NNLO QCD corrections to direct Diphoton production in hadron collision using the q_T -subtraction formalism.
- Calculation included in a fully-exclusive public available parton-level Monte Carlo code: 2γNNLO.
- NNLO corrections found to be large: $\sim 50\%$ over NLO at the LHC.
- NNLO corrections essential away from the back-to-back region (effectively next-order corrections).
- NNLO uncertainty band: first reliable estimate of perturbative uncertainty in some region underestimate the *true* perturbative uncertainty.
- NNLO corrections clearly improves description of the LHC data.

Back-up

Giancarlo Ferrera – Milan University & INFN A NNLO QCD study of diphoton production at the LHC

 $M_{\gamma\gamma}$ spectrum at the LHC $\sqrt{s} = 14 \ TeV$ Smooth cone isolation:

 $\begin{array}{l} \epsilon_{\gamma} = 0.5, \ n = 1, \ R = 0.4 \\ \mbox{Scales:} \ \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, hard} > 40 \mbox{GeV}, \ p_{T}^{\gamma, soft} > 25 \mbox{GeV}, \\ |\eta^{\gamma}| < 2.5, \ 20 < M_{\gamma\gamma} < 250 \mbox{GeV}, \end{array}$

• In the peak region:

$$\frac{\sigma^{\textit{NNLO}}}{\sigma^{\textit{NLO}}} \sim 1.55 ~~ \frac{\sigma^{\textit{NNLO}}}{\sigma^{\textit{NLO}+\textit{box}}} \sim 1.35$$

NNLO corr. $\sim 55\%$ of the total, box contrib. $\sim 22\%$ of NNLO, $qg\sim 60\%$ of NNLO.

 Large higher order corr. due to: New large luminosity channels at each order (qg at NLO, gg at NNLO).

Asymmetric cuts:

new phase space region available beyond LO. At LO $p_T^{\gamma,soft} = p_T^{\gamma,hard} > 40 \, GeV$, $\Rightarrow M_{\gamma\gamma} > 80 \, GeV$ Beyond LO $25 < p_T^{\gamma,soft} < 40 \, GeV$ and $M_{\gamma\gamma} < 80 \, GeV$ available.

 $M_{\gamma\gamma}$ spectrum at the LHC $\sqrt{s} = 14 \text{ TeV}$ Smooth cone isolation:

 $\begin{array}{l} \epsilon_{\gamma} = 0.5, \ n = 1, \ R = 0.4 \\ \mbox{Scales:} \ \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, hard} > 40 \mbox{GeV}, \ p_{T}^{\gamma, soft} > 25 \mbox{GeV}, \\ |\eta^{\gamma}| < 2.5, \ 20 < M_{\gamma\gamma} < 250 \mbox{GeV}, \end{array}$

• In the peak region:

$$rac{\sigma^{\it NNLO}}{\sigma^{\it NLO}} \sim 1.55 ~~ rac{\sigma^{\it NNLO}}{\sigma^{\it NLO+box}} \sim 1.35$$

NNLO corr. \sim 55% of the total, box contrib. \sim 22% of NNLO, $qg \sim$ 60% of NNLO.

 Large higher order corr. due to: New large luminosity channels at each order (qg at NLO, gg at NNLO). Asymmetric cuts:

new phase space region available beyond LO. At LO $p_T^{\gamma,soft} = p_T^{\gamma,hard} > 40 \, GeV$, $\Rightarrow M_{\gamma\gamma} > 80 \, GeV$ Beyond LO $25 < p_T^{\gamma,soft} < 40 \, GeV$ and $M_{\gamma\gamma} < 80 \, GeV$ available.

Invariant mass $M_{\gamma\gamma}$ spectrum measured by [CMS arXiv:1110.6461] compared with NLO QCD.

Invariant mass $M_{\gamma\gamma}$ spectrum measured by [ATLAS arXiv:1107.0581] compared with NLO QCD.

At LO photons are back-to-back: $M_{\gamma\gamma} \ge 2p_T^{\gamma,hard}$. For $M_{\gamma\gamma} \le 2p_T^{\gamma,hard}$ the NLO is the lowest order result. NNLO corrections at low $M_{\gamma\gamma}$ are essential.

- Naive LO and NLO scale variation bad estimate of perturbative uncertainty. Due to opening of new (large luminosity) channels.
- At NNLO all possible partonic channels are open: first reliable estimate of perturbative uncertainty.
- Some N³LO terms (box corrections) are known [Bern,Dixon,Schmidt('02),gamma2MC]

 $\begin{array}{l} M_{\gamma\gamma} \text{ spectrum at the LHC } \sqrt{s}=7 \ TeV \\ \text{Smooth cone isolation:} \\ \epsilon_{\gamma}=0.05, \ n=1, \ R=0.4 \\ \text{Scales:} \ M_{\gamma\gamma}/2 < \mu_{R}=\mu_{F} < 2M_{\gamma\gamma} \\ \text{Cuts:} \\ p_{T}^{\gamma, hard} > 40 GeV, \ p_{T}^{\gamma, soft} > 30 GeV, \\ |\eta^{\gamma}| < 2.5 \ (\text{excl. } 1.44 < |\eta^{\gamma}| < 1.57), \\ 100 < M_{\gamma\gamma} < 160 GeV. \end{array}$

Their effect (\sim 5%) is contained in the NNLO band.

 $M_{\gamma\gamma}$ spectrum at the LHC $\sqrt{s} = 7 \text{ TeV}$ Smooth cone isolation: $\epsilon_{\gamma} = 0.05, n = 1, R = 0.4$ Scales: $M_{\gamma\gamma}/2 < \mu_R = \mu_F < 2M_{\gamma\gamma}$

$$\begin{array}{l} \sum_{p_T^{\gamma, hard}}^{\gamma, hard} > 40 \, GeV, \ p_T^{\gamma, soft} > 30 \, GeV, \\ |\eta^{\gamma}| < 2.5 \ (\text{excl. } 1.44 < |\eta^{\gamma}| < 1.57), \\ 100 < M_{\gamma\gamma} < 160 \, GeV. \end{array}$$

- Naive LO and NLO scale variation bad estimate of perturbative uncertainty. Due to opening of new (large luminosity) channels.
- At NNLO all possible partonic channels are open: first reliable estimate of perturbative uncertainty.
- Some N³LO terms (box corrections) are known [Bern,Dixon,Schmidt('02),gamma2MC]

Their effect ($\sim 5\%)$ is contained in the NNLO band.

 p_T spectrum of the harder and softer γ at the LHC $\sqrt{s} = 14 \text{ TeV}$ Smooth cone isolation:

$$\begin{array}{l} \epsilon_{\gamma} = 0.5, \ n = 1, \ R = 0.4 \\ \mbox{Scales:} \ \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, \textit{soft}} > 40 \mbox{GeV}, \ p_{T}^{\gamma, \textit{soft}} > 25 \mbox{GeV} \\ |\eta^{\gamma}| < 2.5, \ 20 < M_{\gamma\gamma} < 250 \mbox{GeV}, \end{array}$$

Asymmetric cuts:

new phase space region available beyond LO. At LO $p_T^{\gamma,soft} = p_T^{\gamma,hard} > 40 \, GeV$ Beyond LO $25 < p_T^{\gamma,soft} < 40 \, GeV$ available: softer γ production enhanced $1/\tilde{p}^2 \log \tilde{p}^2$ when $\tilde{p} \equiv p_T^{\gamma,soft}/M_{\gamma\gamma} \ll 1$.

- Around LO kinematical boundary $p_T = 40 \ GeV$, perturbative instabilities in $p_T^{\gamma,soft}$ distr.: Sudakov shoulder [Catani,Webber ('97)]).
- For p_T ≥ 50 GeV small correction in p_T^{γ,soft} distr. (both γ are hard).

 p_T spectrum of the harder and softer γ at the LHC $\sqrt{s} = 14 \text{ TeV}$ Smooth cone isolation:

$$\begin{array}{l} \epsilon_{\gamma} = 0.5, \; n = 1, \; R = 0.4 \\ \mbox{Scales:} \; \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, hard} > 40 \; GeV, \; p_{T}^{\gamma, soft} > 25 \; GeV \\ |\eta^{\gamma}| < 2.5, \; 20 < M_{\gamma\gamma} < 250 \; GeV, \end{array}$$

Asymmetric cuts:

new phase space region available beyond LO. At LO $p_T^{\gamma,soft} = p_T^{\gamma,hard} > 40 \, GeV$ Beyond LO $25 < p_T^{\gamma,soft} < 40 \, GeV$ available: softer γ production enhanced $1/\tilde{p}^2 \log \tilde{p}^2$ when $\tilde{p} \equiv p_T^{\gamma,soft}/M_{\gamma\gamma} \ll 1$.

- Around LO kinematical boundary $p_T = 40 \text{ GeV}$, perturbative instabilities in $p_T^{\gamma, soft}$ distr.: Sudakov shoulder [Catani,Webber ('97)]).
- For p_T ≥ 50 GeV small correction in p_T^{γ,soft} distr. (both γ are hard).

 p_T spectrum of the harder and softer γ at the LHC $\sqrt{s} = 14 \text{ TeV}$ Smooth cone isolation:

$$\begin{array}{l} \epsilon_{\gamma} = 0.5, \; n = 1, \; R = 0.4 \\ \mbox{Scales:} \; \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, hard} > 40 \, GeV, \; p_{T}^{\gamma, soft} > 25 \, GeV \\ |\eta^{\gamma}| < 2.5, \; 20 < M_{\gamma\gamma} < 250 \, GeV, \end{array}$$

Asymmetric cuts:

new phase space region available beyond LO. At LO $p_T^{\gamma,soft} = p_T^{\gamma,hard} > 40 \, GeV$ Beyond LO $25 < p_T^{\gamma,soft} < 40 \, GeV$ available: softer γ production enhanced $1/\tilde{p}^2 \log \tilde{p}^2$ when $\tilde{p} \equiv p_T^{\gamma,soft}/M_{\gamma\gamma} \ll 1$.

- Around LO kinematical boundary $p_T = 40 \text{ GeV}$, perturbative instabilities in $p_T^{\gamma, soft}$ distr.: Sudakov shoulder [Catani,Webber ('97)]).
- For p_T ≥ 50 GeV small correction in p_T^{γ,soft} distr. (both γ are hard).

NLO and NNLO QCD corrections (CMS cuts but smooth cone isolation) compared with CMS data.

At LO photons are back-to-back: $\Delta \phi_{\gamma\gamma} = \pi$. For $\Delta \phi_{\gamma\gamma} < \pi$ the NLO is the lowest order result. NNLO corrections at low $\Delta \phi_{\gamma\gamma}$ are essential.

Azimuthal angle $\Delta \phi_{\gamma\gamma}$ spectrum measured by [ATLAS arXiv:1107.0581] compared with NLO QCD.

NLO and NNLO QCD corrections (CMS cuts but smooth cone isolation) compared with CMS data.

At LO photons are back-to-back: $\Delta \phi_{\gamma\gamma} = \pi$. For $\Delta \phi_{\gamma\gamma} < \pi$ the NLO is the lowest order result. NNLO corrections at low $\Delta \phi_{\gamma\gamma}$ are essential.

Smooth cone isolation:

$$\begin{array}{l} \epsilon_{\gamma} = 0.5, \ n = 1, \ R = 0.4 \\ \mbox{Scales:} \ \mu_{R} = \mu_{F} = M_{\gamma\gamma} \\ \mbox{Cuts:} \\ p_{T}^{\gamma, hard} > 17 \mbox{GeV}, \ p_{T}^{\gamma, soft} > 15 \mbox{GeV}, \\ |\eta^{\gamma}| < 1, \ 10 < M_{\gamma\gamma} < 200 \mbox{GeV}, \end{array}$$

In the peak region:

$$rac{\sigma^{\it NNLO}}{\sigma^{\it NLO}}\sim 1.4~~~rac{\sigma^{\it NNLO}}{\sigma^{\it NLO+box}}\sim 1.3$$

• Higher orders corrections smaller than at the LHC:

Cuts only slightly asymmetric.

- For $M_{\gamma\gamma} > 80 \text{ GeV}$ box contribution smaller than at the LHC (probed higher value of parton momentum fractions).
- NNLO corrections still quite large (\sim 30%).

Invariant mass $M_{\gamma\gamma}$ spectrum measured by [CDF arXiv:1106.5131] compared with NLO QCD.

Azimuthal angle $\Delta \phi_{\gamma\gamma}$ spectrum measured by [CDF arXiv:1106.5131] compared with NLO QCD.

Analogous discrepancy for low $M_{\gamma\gamma}$ and low $\Delta\phi_{\gamma\gamma}$ (away from back-to-back region) between CDF data and NLO QCD.

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{split} \frac{d\sigma_{F}^{(res)}(p_{1},p_{2};\mathbf{q}_{\Gamma},M,y,\Omega)}{d^{2}\mathbf{q}_{\Gamma} dM^{2} dy \, d\Omega} &= \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} \, e^{i\mathbf{b}\cdot\mathbf{q}} \, S_{q}(M,b) \\ &\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \, \left[H^{F} C_{1} C_{2} \right]_{c\bar{c};a_{1}a_{2}} \, f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2}) \, f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2}) \, , \\ b_{0} &= 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57\ldots \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} \, e^{\pm y} \, , \quad L \equiv \ln Mb \quad [\text{Catani, de Florian, Grazzini(`01)}] \\ & \left[S_{q}(M,b) &= \exp\left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \, \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} \, . \end{split}$$

 $\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{(2)$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{split} \frac{d\sigma_{F}^{(res)}(p_{1},p_{2};\mathbf{q}_{T},M,y,\Omega)}{d^{2}\mathbf{q}_{T}\,dM^{2}\,dy\,d\Omega} &= \frac{M^{2}}{s}\sum_{c=q,\bar{q}}\left[d\sigma_{c\bar{c},F}^{(0)}\right]\int\frac{d^{2}\mathbf{b}}{(2\pi)^{2}}\,\,e^{i\mathbf{b}\cdot\mathbf{q}}\,\,S_{q}(M,b)\\ &\times\sum_{a_{1},a_{2}}\int_{x_{1}}^{1}\frac{dz_{1}}{z_{1}}\,\int_{x_{2}}^{1}\frac{dz_{2}}{z_{2}}\,\,\left[H^{F}C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}}\,\,f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2})\,\,f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2})\,\,,\\ b_{0} &= 2e^{-\gamma_{E}}\left(\gamma_{E}=0.57\ldots\right), \quad x_{1,2} = \frac{M}{\sqrt{s}}\,e^{\pm y}\,, \quad L \equiv \ln Mb \quad \text{[Catani,de Florian,Grazzini(`01)]}\\ &\left[S_{q}(M,b) &= \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M^{2}}\frac{dq^{2}}{q^{2}}\left[A_{q}(\alpha_{S}(q^{2}))\,\ln\frac{M^{2}}{q^{2}}+B_{q}(\alpha_{S}(q^{2}))\right]\right\}\,\,. \end{split}$$

 $A_q(\alpha_5) = \sum_{n=1}^{\infty} \left(\frac{\alpha_5}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_5) = \sum_{n=1}^{\infty} \left(\frac{\alpha_5}{\pi}\right)^n B_c^{(n)},$ $H_q^F(\alpha_5) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_5}{\pi}\right)^n H_q^F(n), \quad C_{qa}(z;\alpha_5) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_5}{\pi}\right)^n C_{qa}^{(n)}(z).$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{(2$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{aligned} \frac{d\sigma_{F}^{(res)}(p_{1},p_{2};\mathbf{qr},M,y,\Omega)}{d^{2}\mathbf{qr}\,dM^{2}\,dy\,d\Omega} &= \frac{M^{2}}{s}\sum_{c=q,\bar{q}}\left[d\sigma_{c\bar{c},F}^{(0)}\right]\int\frac{d^{2}\mathbf{b}}{(2\pi)^{2}}\,e^{i\mathbf{b}\cdot\mathbf{q}}\,S_{q}(M,b) \\ &\times\sum_{a_{1},a_{2}}\int_{x_{1}}^{1}\frac{dz_{1}}{z_{1}}\int_{x_{2}}^{1}\frac{dz_{2}}{z_{2}}\,\left[H^{F}C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}}\,f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2})\,f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2})\,,\\ b_{0} &= 2e^{-\gamma_{E}}\left(\gamma_{E}=0.57\ldots\right), \quad x_{1,2} &= \frac{M}{\sqrt{s}}\,e^{\pm y}\,, \quad L \equiv \ln Mb \quad \text{[Catani,de Florian,Grazzini(`01)]}\\ &\left[S_{q}(M,b) &= \exp\left\{-\int_{b_{0}^{2}/b^{2}}\frac{dq^{2}}{q^{2}}\left[A_{q}(\alpha_{S}(q^{2}))\,\ln\frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2}))\right]\right\}\,.\end{aligned}$$

 $\left[H^{F} C_{1} C_{2} \right]_{q\bar{q};a_{1}\bar{a}_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q}}_{a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$

 $A_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)},$

 $H_q^F(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^F(n), \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z).$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{(2)$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q}_{T}, M, y, \Omega)}{d^{2}\mathbf{q}_{T} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57... \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y} , \quad L \equiv \ln Mb \quad \text{[Collins, Soper, Sterman(`85)],}$$

$$S_{q}(M, b) = \exp \left\{ -\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{F(2)}, H_{q}^{(2)}, H_{q}^{(2$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q}_{T}, M, y, \Omega)}{d^{2}\mathbf{q}_{T} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57 \dots \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}, \quad L \equiv \ln Mb \quad \text{[Collins, Soper, Sterman(`85)],}$$

$$S_{q}(M, b) = \exp \left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) : A_{q}^{(2)}, B_{q}^{(2)}, H_{q}^{(2)}, H_{q}^{($

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q}_{T}, M, y, \Omega)}{d^{2}\mathbf{q}_{T} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57... \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}, \quad L \equiv \ln Mb \quad [Catani, de Florian, Grazzini(`01)]$$

$$S_{q}(M, b) = \exp \left\{ -\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{q\bar{a}_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$A_{q}(\alpha_{S}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} A_{c}^{(n)}, \quad B_{q}(\alpha_{S}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} B_{c}^{(n)},$$

$$H_{q}^{F}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{q}^{F(n)}, \quad C_{qa}(z;\alpha_{S}) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} C_{qa}^{(n)}(z).$$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q}_{T}, M, y, \Omega)}{d^{2}\mathbf{q}_{T} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57... \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}, \quad L \equiv \ln Mb \quad [Catani, de Florian, Grazzini(`01)]$$

$$S_{q}(M, b) = \exp \left\{ -\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2} \right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$A_{q}(\alpha_{5}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} A_{c}^{(n)}, \quad B_{q}(\alpha_{5}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} B_{c}^{(n)},$$

$$H_{q}^{F}(\alpha_{5}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} H_{q}^{F(n)}, \quad C_{qa}(z;\alpha_{5}) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} C_{qa}^{(n)}(z).$$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{qa}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{qa}^{(2)}$

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_{a} \int_{x}^{1} \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

Transverse-momentum resummation formula

$$M \gg \Lambda_{QCD} , b \gg 1/M , b \ll 1/\Lambda_{QCD}$$

$$M \gg \Lambda_{QCD} , b \gg 1/M , b \ll 1/\Lambda_{QCD}$$

$$C(\alpha_{5}(b_{0}^{2}/b^{2})) = C(\alpha_{5}(M^{2}))$$

$$\times \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \beta(\alpha_{5}(q^{2})) \frac{d \ln C(\alpha_{5}(q^{2}))}{d \ln \alpha_{5}(q^{2})}\right\}$$

$$h_{2}(p_{2}) = \int_{a_{1},a_{2}}^{x_{2}} \int_{a_{2}}^{x_{2}} \int_{a_{2}}^{y_{2}} e^{i\mathbf{b}\cdot\mathbf{q}} S_{q}(M, b)$$

$$\times \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} C_{\bar{q}} a_{2}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_a \int_x^1 \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ ($A_c^{(1,2)}$, $B_c^{(1,2)}$), $A_c^{(3)}$ calculated more recently [Becher,Neubert('11)]
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. $C_{ca}(z, \alpha_S)$ up to $\mathcal{O}(\alpha_S^2)$ ($G_{ga}(z, \alpha_S)$ up to $\mathcal{O}(\alpha_S)$), and of the hard-virtual factor $H_c^F(\alpha_S)$ up to $\mathcal{O}(\alpha_S^2)$ for DY/H processes. In the hard scheme:

$$C_{qq}^{(1)}(z) = \frac{C_F}{2}(1-z), \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z),$$

$$C_{gg}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a = q, g).$$

$$H_q^{DY(1)} = C_F\left(\frac{\pi^2}{2} - 4\right), \ H_g^{H(1)} = C_A \pi^2/2 + \frac{11}{2}.$$

Analogous (bit longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_{q}^{DY(2)}$, $H_{g}^{H(2)}$.

• Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ $(A_c^{(1,2)}, B_c^{(1,2)}), A_c^{(3)}$ calculated more recently [Becher,Neubert('11)]
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. $C_{ca}(z, \alpha_S)$ up to $\mathcal{O}(\alpha_S^2)$ ($G_{ga}(z, \alpha_S)$ up to $\mathcal{O}(\alpha_S)$), and of the hard-virtual factor $H_c^F(\alpha_S)$ up to $\mathcal{O}(\alpha_S^2)$ for DY/H processes. In the hard scheme:

$$C_{qq}^{(1)}(z) = \frac{C_F}{2}(1-z), \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z),$$

$$(1)_{gg}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a = q, g).$$

$$H_q^{DY(1)} = C_F\left(\frac{\pi^2}{2} - 4\right), \ H_g^{H(1)} = C_A \pi^2/2 + \frac{11}{2}.$$

Analogous (bit longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_q^{DY(2)}$, $H_g^{H(2)}$.

• Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ $(A_c^{(1,2)}, B_c^{(1,2)}), A_c^{(3)}$ calculated more recently [Becher,Neubert('11)]
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. C_{ca}(z, α_S) up to O(α²_S) (G_{ga}(z, α_S) up to O(α_S)), and of the hard-virtual factor H^F_c(α_S) up to O(α²_S) for DY/H processes. In the hard scheme:

$$\begin{split} C_{qq}^{(1)}(z) &= \frac{C_F}{2}(1-z) \,, \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z \,, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z) \,, \\ C_{gg}^{(1)}(z) &= C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0 \,, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a=q,g) \,. \\ H_q^{DY(1)} &= C_F \left(\frac{\pi^2}{2} - 4\right) \,, \ H_g^{H(1)} = C_A \pi^2/2 + \frac{11}{2} \,. \end{split}$$

Analogous (bit longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_{q}^{DY(2)}$, $H_{g}^{H(2)}$.

 Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].
- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_s)$.
- However H^F_c(α_S) has an *all-order universal* structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

$$\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \begin{array}{c} \text{renormalized virtual amplitude} \\ \text{(UV finite but IR divergent).} \end{array}$$

$$\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha s}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon),$$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$\widetilde{\mathcal{M}}_{car{c}
ightarrow F}(\hat{p}_1,\hat{p}_2;\{q_i\}) = \left[1 - \tilde{I}_c(\epsilon,M^2)
ight]\mathcal{M}_{car{c}
ightarrow F}(\hat{p}_1,\hat{p}_2;\{q_i\}) \;\;,$$

hard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an *all-order universal* structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$

$$(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \tilde{l}_c^{(n)}(\epsilon),$$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{I}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) \ ,$

hard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\alpha_{5}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_s)$.
- However H^F_c(α_S) has an *all-order universal* structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (UV \text{ finite but IR divergent}).$

$$\tilde{l}_c(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{lpha s}{2\pi}\right)^n \tilde{l}_c^{(n)}(\epsilon) \,,$$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) = \left[1 - \tilde{I}_c(\epsilon,M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) \ ,$

ard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\alpha_{5}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_s)$.
- However H^F_c(α_S) has an *all-order universal* structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (UV \text{ finite but IR divergent}).$

$$\tilde{l}_c(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \tilde{l}_c^{(n)}(\epsilon),$$
 IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) \ ,$$

hard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an *all-order universal* structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (UV \text{ finite but IR divergent}).$

$$\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha s}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon), \qquad \begin{array}{l} \text{IR subtraction universal operators} \\ \text{(contain IR ϵ-poles and IR finite terms)} \end{array}$$

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) \;\;,$$

hard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

Hard factors at NNLO

- The previous all-order factorization formula was explicitly evaluated up to NNLO: we know the explicit expression of the *universal* subtraction operators up to two-loops $\tilde{I}_c^{(1)}(\epsilon)$, $\tilde{I}_c^{(2)}(\epsilon)$.
- We can straightforward apply the factorization formula to determine the NNLO hard-virtual factors from the knowledge of the two-loops amplitudes.
- E.g. diphoton production: we rederived the result for $H_q^{\gamma\gamma(1)}$ [Balazs et al.('98)] and (using the two-loop amplitudes [Anastasiou et al.('02)]) we obtained the $H_q^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, GF, Grazzini('12)]

$$\begin{split} H_q^{\gamma\gamma(1)} &= \frac{C_F}{2} \left\{ (\pi^2 - 7) + \frac{\left((1 - v)^2 + 1 \right) \ln^2 (1 - v) + v(v + 2) \ln(1 - v) + (v^2 + 1) \ln^2 v + (1 - v)(3 - v) \ln v}{(1 - v)^2 + v^2} \right\} \\ H_q^{\gamma\gamma(2)} &= \frac{1}{4\mathcal{A}_{LO}} \left[\mathcal{F}_{\textit{inite},q\bar{q}\gamma\gamma;s}^{0.5} + \mathcal{F}_{\textit{inite},q\bar{q}\gamma\gamma;s}^{1.5} \right] + 3\zeta_2 \ C_F H_q^{\gamma\gamma(1)} - \frac{45}{4} \zeta_4 \ C_F^2 + C_F N_f \left(-\frac{41}{162} - \frac{97}{72} \zeta_2 + \frac{17}{72} \zeta_3 \right) \\ &+ C_F \ C_A \left(\frac{607}{324} + \frac{1181}{144} \zeta_2 - \frac{187}{144} \zeta_3 - \frac{105}{32} \zeta_4 \right) , \quad \text{where} \quad v = -(p_q - p_\gamma)^2 / M^2. \end{split}$$

• Analogous results were obtained for $ZZ, W\gamma, Z\gamma$ [Grazzini et al.('14)], [Cascioli et al.('14)],[Gehrmann et al.('14)] and $b\bar{b} \rightarrow H$ production [Harlander et al.('14)].

Hard factors at NNLO

- The previous all-order factorization formula was explicitly evaluated up to NNLO: we know the explicit expression of the *universal* subtraction operators up to two-loops $\tilde{I}_c^{(1)}(\epsilon)$, $\tilde{I}_c^{(2)}(\epsilon)$.
- We can straightforward apply the factorization formula to determine the NNLO hard-virtual factors from the knowledge of the two-loops amplitudes.
- E.g. diphoton production: we rederived the result for $H_q^{\gamma\gamma(1)}$ [Balazs et al.('98)] and (using the two-loop amplitudes [Anastasiou et al.('02)]) we obtained the $H_q^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, GF, Grazzini('12)]

$$\begin{split} H_q^{\gamma\gamma(1)} &= \frac{C_F}{2} \left\{ (\pi^2 - 7) + \frac{\left((1 - v)^2 + 1 \right) \ln^2 (1 - v) + v(v + 2) \ln(1 - v) + (v^2 + 1) \ln^2 v + (1 - v)(3 - v) \ln v}{(1 - v)^2 + v^2} \right\} \\ H_q^{\gamma\gamma(2)} &= \frac{1}{4\mathcal{A}_{LO}} \left[\mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{0.2} + \mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{1.2} \right] + 3\zeta_2 \ C_F H_q^{\gamma\gamma(1)} - \frac{45}{4} \zeta_4 \ C_F^2 + C_F N_f \left(-\frac{41}{162} - \frac{97}{72} \zeta_2 + \frac{17}{72} \zeta_3 \right) \\ &+ C_F \ C_A \left(\frac{607}{324} + \frac{1181}{144} \zeta_2 - \frac{187}{144} \zeta_3 - \frac{105}{32} \zeta_4 \right) , \quad \text{where} \quad v = -(p_q - p_\gamma)^2 / M^2. \end{split}$$

• Analogous results were obtained for $ZZ, W\gamma, Z\gamma$ [Grazzini et al.('14)], [Cascioli et al.('14)],[Gehrmann et al.('14)] and $b\bar{b} \rightarrow H$ production [Harlander et al.('14)].