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1. Black Holes (BHs) and Wormholes (WHs)
BHs (candidates) are real and astrophysical objects 

by EM(X-ray) and GW methods
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BHs 

Singularity 
(New Physics?)

Horizon

Incoming only

No outgoing

is caused by strong gravity (pull)
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Wormholes (WHs)
a spacetime “tunnel” 

Speculative objects connecting two 
different points in a spacetime

non-trivial topology (non-simply connected)

coined by John Wheeler (1957)
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WHs require a violation of some energy conditions (in GR)

or a modification of gravity theories.

e.g.

Null Energy Condition (NEC):

For any null vector, Tµ�kµk� � 0

Averaged Null Energy Condition (ANEC):

On a null curve,
�

�
Tµ�kµk�d� � 0
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“Tidal fields” (in GR) are described by Raychaudhuri equation. 

On a construction of  WHs (spacetime tunnels):

Amal Kumar Raychaudhuri (1923-2005)
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Raychaudhuri equation for null geodesics

Expansion rate of 
        null geodesic bundle

Shear of the bundle

Vorticity of the bundle

d�̂

d�
= �Rµ�kµk� � 2�̂2 � 1

2
�̂2 + 2�̂2

�̂ � P �
µ(��kµ)

�̂µ� � P�
<µP �

�>��k�

�̂µ� � P�
[µP �

�]��k�

P�
µ(       Projection tensor)
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We consider the throat of a spherically symmetric WH.

For purely radial null geodesics, 

Then,

�̂ = 0

The minimal cross-section area of the null bundle 
occurs at the WH throat: 

&
d�̂

d�
� 0

d�̂

d�
= �Rµ�kµk� � 1

2
�̂2

�̂µ� = 0 �̂µ� = 0
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Therefore,  at the throat 

By using Einstein equation (in GR), this is rewritten as 

Null energy condition must be violated at the throat. 

N.B.

By integrating along the null geodesic, one can see that 

averaged null energy condition must be violated in WHs.

Rµ�kµk� � 0

Tµ�kµk� � 0
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2.  Gravitational Lensing by BHs (and stars)  
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Gravitational Microlensing

Nature, 562, 349 (2018)

4GM

c2b

Light deflection
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Brighter image

Microlensing by WHs ?

Stronger gravitational pull 

 More light rays
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3. Gravitational Lensing by WHs
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Light propagation in Ellis wormhole, 
especially deflection angle of light, 
is discussed by many authors.

IV. CONCLUSION

The light deflection by an Ellis wormhole has been
reexamined. The bending angle as a function of the ratio
between the impact parameter and the throat radius of
the wormhole has been obtained in terms of a complete
elliptic integral of the first kind. The deflection angle in
this geometry in a different form [10,13] is the same
as the present one but it is depending on the closest
approach. In the weak field approximation, it has
been shown that another expression for the deflection
angle derived (and used) in recent papers [14–17] is
correct at the leading order, but it breaks down at the

next order because there exists a throat in the Ellis
geometry.
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Equation (14) can be recovered by lengthy calculations
using Weierstrass’s elliptic functions [21].

[1] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D
61, 064021 (2000).

[2] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003
(2000).

[3] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[4] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002).

[5] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[6] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[7] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[8] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16,

111 (1984).
[9] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[10] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[11] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D

65, 023001 (2001).

[12] A. A. Shatskii, Astronomy Reports 48, 525 (2004).
[13] K. K. Nandi, Y. Z. Zhang, and A.V. Zakharov, Phys. Rev.

D 74, 024020 (2006).
[14] F. Abe, Astrophys. J. 725, 787 (2010).
[15] Y. Toki, T. Kitamura, H. Asada, and F. Abe, Astrophys. J.

740, 121 (2011).
[16] T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953

(2008).
[17] A. Bhattacharya and A.A. Potapov, Mod. Phys. Lett. A

25, 2399 (2010).
[18] Eq. (54) in [13] uses an uncommon notation. Their argu-

ment of the first kind Elliptic integral is k2 that is a square
of the usual argument for KðkÞ.

[19] P. Amore and S. Arceo, Phys. Rev. D 73, 083004
(2006).

[20] P. Amore, S. Arceo, and F.M. Fernández, Phys. Rev. D 74,
083004 (2006).

[21] G.W. Gibbons and M. Vyska, Classical Quantum Gravity
29, 065016 (2012).

BRIEF REPORTS PHYSICAL REVIEW D 85, 107501 (2012)

107501-3

IV. CONCLUSION

The light deflection by an Ellis wormhole has been
reexamined. The bending angle as a function of the ratio
between the impact parameter and the throat radius of
the wormhole has been obtained in terms of a complete
elliptic integral of the first kind. The deflection angle in
this geometry in a different form [10,13] is the same
as the present one but it is depending on the closest
approach. In the weak field approximation, it has
been shown that another expression for the deflection
angle derived (and used) in recent papers [14–17] is
correct at the leading order, but it breaks down at the

next order because there exists a throat in the Ellis
geometry.

ACKNOWLEDGMENTS

We would like to thank F. Abe and V. Perlick for the
stimulating comments. This work was supported in part
(H.A.) by a Japanese Grant-in-Aid for Scientific Research
from the Ministry of Education, No. 21540252.
Note added—Equation (9) was found first in Ref. [8].

Equation (14) can be recovered by lengthy calculations
using Weierstrass’s elliptic functions [21].

[1] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D
61, 064021 (2000).

[2] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003
(2000).

[3] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[4] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002).

[5] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[6] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[7] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[8] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16,

111 (1984).
[9] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[10] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[11] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D

65, 023001 (2001).

[12] A. A. Shatskii, Astronomy Reports 48, 525 (2004).
[13] K. K. Nandi, Y. Z. Zhang, and A.V. Zakharov, Phys. Rev.

D 74, 024020 (2006).
[14] F. Abe, Astrophys. J. 725, 787 (2010).
[15] Y. Toki, T. Kitamura, H. Asada, and F. Abe, Astrophys. J.

740, 121 (2011).
[16] T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953

(2008).
[17] A. Bhattacharya and A.A. Potapov, Mod. Phys. Lett. A

25, 2399 (2010).
[18] Eq. (54) in [13] uses an uncommon notation. Their argu-

ment of the first kind Elliptic integral is k2 that is a square
of the usual argument for KðkÞ.

[19] P. Amore and S. Arceo, Phys. Rev. D 73, 083004
(2006).

[20] P. Amore, S. Arceo, and F.M. Fernández, Phys. Rev. D 74,
083004 (2006).

[21] G.W. Gibbons and M. Vyska, Classical Quantum Gravity
29, 065016 (2012).

BRIEF REPORTS PHYSICAL REVIEW D 85, 107501 (2012)

107501-3

IV. CONCLUSION

The light deflection by an Ellis wormhole has been
reexamined. The bending angle as a function of the ratio
between the impact parameter and the throat radius of
the wormhole has been obtained in terms of a complete
elliptic integral of the first kind. The deflection angle in
this geometry in a different form [10,13] is the same
as the present one but it is depending on the closest
approach. In the weak field approximation, it has
been shown that another expression for the deflection
angle derived (and used) in recent papers [14–17] is
correct at the leading order, but it breaks down at the

next order because there exists a throat in the Ellis
geometry.

ACKNOWLEDGMENTS

We would like to thank F. Abe and V. Perlick for the
stimulating comments. This work was supported in part
(H.A.) by a Japanese Grant-in-Aid for Scientific Research
from the Ministry of Education, No. 21540252.
Note added—Equation (9) was found first in Ref. [8].

Equation (14) can be recovered by lengthy calculations
using Weierstrass’s elliptic functions [21].

[1] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D
61, 064021 (2000).

[2] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003
(2000).

[3] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[4] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002).

[5] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[6] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[7] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[8] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16,

111 (1984).
[9] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[10] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[11] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D

65, 023001 (2001).

[12] A. A. Shatskii, Astronomy Reports 48, 525 (2004).
[13] K. K. Nandi, Y. Z. Zhang, and A.V. Zakharov, Phys. Rev.

D 74, 024020 (2006).
[14] F. Abe, Astrophys. J. 725, 787 (2010).
[15] Y. Toki, T. Kitamura, H. Asada, and F. Abe, Astrophys. J.

740, 121 (2011).
[16] T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953

(2008).
[17] A. Bhattacharya and A.A. Potapov, Mod. Phys. Lett. A

25, 2399 (2010).
[18] Eq. (54) in [13] uses an uncommon notation. Their argu-

ment of the first kind Elliptic integral is k2 that is a square
of the usual argument for KðkÞ.

[19] P. Amore and S. Arceo, Phys. Rev. D 73, 083004
(2006).

[20] P. Amore, S. Arceo, and F.M. Fernández, Phys. Rev. D 74,
083004 (2006).

[21] G.W. Gibbons and M. Vyska, Classical Quantum Gravity
29, 065016 (2012).

BRIEF REPORTS PHYSICAL REVIEW D 85, 107501 (2012)

107501-3

IV. CONCLUSION

The light deflection by an Ellis wormhole has been
reexamined. The bending angle as a function of the ratio
between the impact parameter and the throat radius of
the wormhole has been obtained in terms of a complete
elliptic integral of the first kind. The deflection angle in
this geometry in a different form [10,13] is the same
as the present one but it is depending on the closest
approach. In the weak field approximation, it has
been shown that another expression for the deflection
angle derived (and used) in recent papers [14–17] is
correct at the leading order, but it breaks down at the

next order because there exists a throat in the Ellis
geometry.

ACKNOWLEDGMENTS

We would like to thank F. Abe and V. Perlick for the
stimulating comments. This work was supported in part
(H.A.) by a Japanese Grant-in-Aid for Scientific Research
from the Ministry of Education, No. 21540252.
Note added—Equation (9) was found first in Ref. [8].

Equation (14) can be recovered by lengthy calculations
using Weierstrass’s elliptic functions [21].

[1] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D
61, 064021 (2000).

[2] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003
(2000).

[3] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[4] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002).

[5] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[6] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[7] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[8] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16,

111 (1984).
[9] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[10] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[11] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D

65, 023001 (2001).

[12] A. A. Shatskii, Astronomy Reports 48, 525 (2004).
[13] K. K. Nandi, Y. Z. Zhang, and A.V. Zakharov, Phys. Rev.

D 74, 024020 (2006).
[14] F. Abe, Astrophys. J. 725, 787 (2010).
[15] Y. Toki, T. Kitamura, H. Asada, and F. Abe, Astrophys. J.

740, 121 (2011).
[16] T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953

(2008).
[17] A. Bhattacharya and A.A. Potapov, Mod. Phys. Lett. A

25, 2399 (2010).
[18] Eq. (54) in [13] uses an uncommon notation. Their argu-

ment of the first kind Elliptic integral is k2 that is a square
of the usual argument for KðkÞ.

[19] P. Amore and S. Arceo, Phys. Rev. D 73, 083004
(2006).

[20] P. Amore, S. Arceo, and F.M. Fernández, Phys. Rev. D 74,
083004 (2006).

[21] G.W. Gibbons and M. Vyska, Classical Quantum Gravity
29, 065016 (2012).

BRIEF REPORTS PHYSICAL REVIEW D 85, 107501 (2012)

107501-3

!̂> 2=ðnþ 1Þ in units of the Einstein ring radius under a
large-n approximation.

Therefore, time-symmetric demagnification parts in
numerical light curves by gravitational microlensing [14]
may be evidence of an Ellis wormhole, but they do not
always prove it. Such a gravitational demagnification of
light might be used for hunting a clue of exotic matter and
energy that are described by an equation of state more
general than the Ellis wormhole case. Examples of n ¼ 3
and 10 show maximally%10 and%60 percent depletion of
the light, when the source position is !̂% 1:1 and !̂% 0:7,
respectively.

It is left to future work to perform a numerical campaign
for the vast parameter space.

The above gravitational demagnification of light occurs
presumably because modified lenses could act as an effec-
tively negative (quasilocal) mass on a particular light ray
(through Ricci focusing). Regarding this issue, a more
rigorous formulation is needed. It would be interesting to

study a relation between the model parameter n and vital
modified gravity theories (or matter models with an exotic
equation of state) and also to make an interpretation of the
parameter n in the framework of the theory of general
relativity.
The analytical approximate solution in this paper is

obtained at the linear order of 1=!̂ to discuss the total
magnification. Tsukamoto and Harada [27] have studied
the next order of 1=!̂ to discuss the signed magnification
sums, namely the difference between the amplifications of
two images.

ACKNOWLEDGMENTS

We would like to thank F. Abe, T. Harada, S. Hayward,
K. Nakao, and M. Visser for useful conversations. We wish
to thank N. Tsukamoto for stimulating comments on the
lecture (T.K.) on the present subject at ‘‘WormHole
Workshop 2012’’ at Rikkyo University.

[1] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D
61, 064021 (2000).

[2] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003
(2000).

[3] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[4] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002).

[5] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[6] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[7] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[8] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[9] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16,

111 (1984).
[10] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[11] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D

65, 023001 (2001).
[12] A. A. Shatskii, Astronomy Reports 48, 525 (2004).
[13] K. K. Nandi, Y. Z. Zhang, and A.V. Zakharov, Phys. Rev.

D 74, 024020 (2006).
[14] F. Abe, Astrophys. J. 725, 787 (2010).

[15] Y. Toki, T. Kitamura, H. Asada, and F. Abe, Astrophys. J.
740, 121 (2011).

[16] N. Tsukamoto, T. Harada, and K. Yajima, Phys. Rev. D 86,
104062 (2012).

[17] T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953 (2008).
[18] A. Bhattacharya and A.A. Potapov, Mod. Phys. Lett. A

25, 2399 (2010).
[19] K. Nakajima and H. Asada, Phys. Rev. D 85, 107501

(2012).
[20] G.W. Gibbons and M. Vyska, Classical Quantum Gravity

29, 065016 (2012).
[21] M. Visser, Lorentzian Wormholes: From Einstein to

Hawking (AIP, New York, 1995).
[22] S. Capozziello, V. F. Cardone, and A. Troisi, Phys. Rev. D

73, 104019 (2006).
[23] Z. Horvath, L. A. Gergely, D. Hobill, S. Capozziello, and

M. De Laurentis, arXiv:1207.1823.
[24] S. Mendoza, T. Bernal, X. Hernandez, J. C. Hidalgo, and

L.A. Torres, arXiv:1208.6241.
[25] H. Asada, Prog. Theor. Phys. 125, 403 (2011).
[26] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational

Lenses (Springer, New York, 1992).
[27] N. Tsukamoto and T. Harada, arXiv:1211.0380.

BRIEF REPORTS PHYSICAL REVIEW D 87, 027501 (2013)

027501-5

19年2月27日水曜日



Deflection angle of light in an Ellis wormhole geometry

Koki Nakajima and Hideki Asada
Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

(Received 1 March 2012; published 3 May 2012)

We reexamine the light deflection by an Ellis wormhole. The bending angle as a function of the ratio

between the impact parameter and the throat radius of the wormhole is obtained in terms of a complete

elliptic integral of the first kind. This result immediately yields asymptotic expressions in the weak field

approximation. It is shown that an expression for the deflection angle derived (and used) in recent papers

is valid at the leading order but it breaks down at the next order because of the nontrivial spacetime

topology.
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I. INTRODUCTION

The bending of light was the first experimental confir-
mation of the theory of general relativity. At present, the
gravitational lensing is one of the important tools in as-
tronomy and cosmology. It is widely used for investigating
extrasolar planets, dark matter and dark energy.

The light bending is also of theoretical importance, in
particular, for studying a null structure of a spacetime. For
example, strong gravitational lensing in a Schwarzschild
black hole was considered by Frittelli, Kling and Newman
[1] and by Virbhadra and Ellis [2]; Virbhadra and Ellis [3]
later described the strong gravitational lensing by naked
singularities; Eiroa, Romero and Torres [4] treated
Reissner-Nordström black hole lensing.

A peculiar feature of general relativity is that the theory
admits a nontrivial topology of a spacetime, for instance a
wormhole. An Ellis wormhole is a particular example of
the Morris-Thorne traversable wormhole class [5–7].
Many yeas ago, scattering problems in such spacetimes
were discussed (for instance, [8,9]). One remarkable fea-
ture is that the Ellis wormhole has a zero mass at the spatial
infinity but it causes the light deflection [8,9]. Moreover,
the gravitational lensing by wormholes has been recently
investigated as an observational probe of such an exotic
spacetime [10–15]. Perlick [10], Nandi, Zhang and
Zakharov [13], Dey and Sen [16] calculated a deflection
angle of light due to an Ellis wormhole, though their
expressions are in different forms. Therefore, a reason for
such differences should be clarified.

Moreover, a rigorous form of the bending angle plays an
important role in understanding properly a strong gravita-
tional field [1–3,10]. The main purpose of this brief paper
is to reexamine the bending angle of light by the Ellis
wormhole in order to clarify an unclear relationship among
the different expressions. We shall show that the deflection
angle as a function of the impact parameter and the throat
radius of the wormhole is obtained in terms of a complete
elliptic integral of the first kind. We discuss also the
validity and limitation of several forms of the deflection
angle by wormholes, which have been recently derived and

often used [10,13–17]. We take the units of G ¼ c ¼ 1
throughout this paper.

II. DEFLECTION ANGLE OF LIGHT BY THE
ELLIS WORMHOLE

The line element for the Ellis wormhole is written as
[5,10,13]

ds2 ¼ !dt2 þ dr2 þ ðr2 þ a2Þðd!2 þ sin2!d"2Þ: (1)

To cover the entire wormhole geometry, the coordinate r
runs from !1 to þ1, where r ¼ 0 corresponds to the
throat of the wormhole. In order to discuss the deflection
angle of light, it is sufficient to consider r 2 ð0;þ1Þ, only
one half of the wormhole geometry. This metric gives the
Lagrangian for a massless (lightlike) particle as

L ¼ ! _t2 þ _r2 þ ðr2 þ a2Þð _!2 þ sin2! _"2Þ; (2)

where the dot denotes the derivative with respect to the
affine parameter.
The Ellis wormhole is spherically symmetric so that

a photon orbit can be considered on the equatorial plane
! ¼ #=2 without loss of generality. Since this spacetime is
stationary and spherically symmetric, we have two con-
stants of motion of a photon as

E & _t; (3)

h & ðr2 þ a2Þ _"; (4)

where E and h are corresponding to the photon’s specific
energy and the photon’s specific angular momentum, re-
spectively. The two constants of motion are substituted into
the null condition ds2 ¼ 0 to obtain an equation for the
photon orbit as

1

ðr2 þ a2Þ2
!
dr

d"

"
2
¼ 1

b2
! 1

r2 þ a2
; (5)

where a constant b is defined as h=E. The impact parame-
ter is the perpendicular coordinate distance between the
projectile’s fiducial path and the center of a deflector by
assuming that the fiducial path were not deflected. For the

PHYSICAL REVIEW D 85, 107501 (2012)
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Ellis wormhole case, the zero deflection limit is obtained
by a ! 0. If a ¼ 0, r ¼ b means that r is the minimum
according to Eq. (5). Namely, the above constant b can be
called the impact parameter of the light trajectory. On the
other hand, the closest approach r0 between the light
trajectory and the coordinate origin (the deflector) is given
by Eq. (5) as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 " a2

p
: (6)

Namely, r0 is the minimum value of the radial coordinate
along the light ray.

An integration of Eq. (5) immediately gives the deflec-
tion angle expressed as

!ðbÞ ¼ 2
Z 1

r0

bdr
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p " ": (7)

We make a coordinate transformation from r 2 ½0;þ1Þ to
R 2 ½a;þ1Þ by R2 ¼ r2 þ a2, where R is the circumfer-
ence radius. Equation (7) becomes
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This is rewritten as
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p " " ¼ 2KðkÞ " ";

(9)

where t ' b=R and k ' a=b. The integral in Eq. (9) is a
complete elliptic integral of the first kind KðkÞ, which
admits a series expansion for k < 1. Hence, Eq. (9) is
expanded as
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#
2
k2n: (10)

III. COMPARISON WITH PREVIOUS RESULTS

Perlick [10] and Nandi, Zhang and Zakharov [13] later
obtained the deflection angle in a different form (e.g.,
Eq. (54) in [13]) that is expressed in terms of the closest
approach [10,13]. It follows that their expression using the
closest approach can be recovered from Eq. (9) by noting
r20 ¼ b2 " a2 [18]. However, the present result by Eq. (9)
is more convenient for astronomers, especially on a micro-
lens study, since describing an image direction (its angular
position) needs the impact parameter rather than the closest
approach.

Dey and Sen [16] followed the method proposed by
Amore and Arceo [19,20], in which firstly the linear delta
function technique is used to approximate the above type
of the integral with an ansatz potential and next the prin-
ciple of minimal sensitivity (PMS) is used to minimize
the parametric dependence on the deflection angle. They
obtained the deflection angle as
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where r0 is the closest approach of the light. In the weak
field approximation (a ( b) r0), the deflection angle is
expanded as
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The deflection angle derived in this paper is based on not
the closest distance but the impact parameter. In terms of
the impact parameter, Eq. (12) is rearranged as
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where we used r20 ¼ b2 " a2.
In the rigorous treatment without using the PMS ap-

proximation, we have obtained Eq. (9), the expansion of
which in the weak field is given by Eq. (10) and explicitly
written as
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Comparing Eq. (14) with Eq. (13) shows that the deflection
angle recently expressed by Eq. (11) is valid at the leading
order in the weak field approximation but it breaks down at
the next order. Note that the complete elliptic integral of
the first kind cannot be expressed by a square root like
Eq. (11).
Why does the previous approach fail? The main reason

is a difference between a black hole spacetime and a
wormhole. The Schwarzschild spacetime has a singularity
at r ¼ 0, which also leads to a singular behavior of the light
bending. Therefore, the PMS approximation using the
delta function works [19,20]. On the other hand, r ¼ 0 in
the Ellis geometry is a regular sphere which can connect
with a separate spatial domain. The deflection angle by the
Ellis wormhole is not inversely but logarithmically diver-
gent there. Therefore, the PMS does not seem to be suitable
for this case. Let us consider a case that the closest ap-
proach vanishes, for which r0 ¼ 0, namely b ¼ a. Then,
we obtain

!ðaÞ ¼ 2
Z 1

0

dt

1" t2
" ") ln1: (15)

On the other hand, Eq. (11) leads to ! ! "ð
ffiffiffi
2

p
" 1Þ as

r0 ! 0 (b ! a). This result misses the throat effects and
thus it is incorrectly finite.
Note that the throat r ¼ 0 is a light sphere (photon

sphere). A light ray can stay on this sphere if it is tangential
to the sphere, because r ¼ 0 satisfies Eq. (5). The existence
of the light sphere is reflected by the divergence in Eq. (15).
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Comparing Eq. (14) with Eq. (13) shows that the deflection
angle recently expressed by Eq. (11) is valid at the leading
order in the weak field approximation but it breaks down at
the next order. Note that the complete elliptic integral of
the first kind cannot be expressed by a square root like
Eq. (11).
Why does the previous approach fail? The main reason

is a difference between a black hole spacetime and a
wormhole. The Schwarzschild spacetime has a singularity
at r ¼ 0, which also leads to a singular behavior of the light
bending. Therefore, the PMS approximation using the
delta function works [19,20]. On the other hand, r ¼ 0 in
the Ellis geometry is a regular sphere which can connect
with a separate spatial domain. The deflection angle by the
Ellis wormhole is not inversely but logarithmically diver-
gent there. Therefore, the PMS does not seem to be suitable
for this case. Let us consider a case that the closest ap-
proach vanishes, for which r0 ¼ 0, namely b ¼ a. Then,
we obtain
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r0 ! 0 (b ! a). This result misses the throat effects and
thus it is incorrectly finite.
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sphere). A light ray can stay on this sphere if it is tangential
to the sphere, because r ¼ 0 satisfies Eq. (5). The existence
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Abstract
In this paper, we focus on analytical calculations involving null geodesics in
some spherically symmetric spacetimes. We use Weierstrass elliptic functions
to fully describe null geodesics in Schwarzschild spacetime and to derive
analytical formulae connecting the values of radial distance at different
points along the geodesic. We then study the properties of light triangles in
Schwarzschild spacetime and give the expansion of the deflection angle to the
second order in both M/r0 and M/b where M is the mass of the black hole, r0

the distance of the closest approach of the light ray and b the impact parameter.
We also use the Weierstrass function formalism to analyze other more exotic
cases such as Reissner–Nordstrøm null geodesics and Schwarzschild null
geodesics in four and six spatial dimensions. Finally we apply Weierstrass
functions to describe the null geodesics in the Ellis wormhole spacetime and
give an analytic expansion of the deflection angle in M/b.

PACS numbers: 04.20.Gz, 04.50.Gh, 04.70.−s

1. Introduction

Geodesics in Schwarzschild spacetime have been studied for a long time and the importance
of a good understanding of their behavior is clear. In this paper, we shall focus on
analytical calculations involving null geodesics. While these are interesting in their own right,
calculations like this are also important for experiments testing general relativity to high levels
of accuracy. The examples of two such proposed experiments are the ‘Laser Astrometric Test of
Relativity’ (LATOR) and ‘Beyond Einstein Advanced Coherent Optical Network’ (BEACON),
both of which use paths of light rays to verify general relativity and are described in detail
in [1]. Both are intended to measure second-order effects in light bending. Elliptic functions
have been used to describe the geodesics in Schwarzschild spacetime before, mainly in [2] and
more recently in [3, 4]. In [2, 4], the focus is mainly on the paths of massive particles and even
though they mention the possibility of using Weierstrass functions in the null case, they do not
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Now the angle of deflection δφ is given by δφ = π − 2I and so

δφ = π − π

∞∑

n=0

(
2n
n

)2

2−4nξ n. (136)

The first few terms of this expansion are

δφ = −π

4
ξ − 9π

64
ξ 2 − 25π

256
ξ 3 − 1225π

16 384
ξ 4 − 3969π

65 536
ξ 5 − 53 361π

1048 576
ξ 6 − · · · (137)

with ξ = (M/b)2.
We have also tried expanding the deflection angle in terms of µ = M/r0 following [6].

Substituting

ξ = 1

1 +
( 1

µ
− 1

)2 (138)

into integral (127) and expanding in the powers of µ, using Mathematica, the first few terms
are
δφ

π
= −1

4
µ2 − 1

2
µ3 − 41

64
µ4 − 9

16
µ5 − 25

256
µ6 + 37

128
µ7 + 11 959

16 384
µ8 + 1591

2048
µ9

+ 13 311
65 536

µ10 − 29 477
32 768

µ11 − · · · . (139)

This expansion is not very useful, since the coefficients do not seem to be decreasing very fast;
the coefficient of µ11 is almost 1.

Note that this expansion is completely different from the one given in [6].

4. Conclusion

In this paper, we used Weierstrass elliptic functions to give a full description and classification
of null geodesics in Schwarzschild spacetime. We then used this description to derive some
analytic formulae connecting three points on these geodesics and found a second-order
expansion of the deflection angle in the scattering case. Finally, we derived some properties
of light triangles in this spacetime and used the Gauss–Bonnet theorem to derive a quantity
which gives the same answer when integrated along a scattering geodesic, independently of
the geodesic in question.

We then showed that the Weierstrass elliptic function formalism can also be used
to describe other more exotic cases such as Reissner–Nordstrøm null geodesics and
Schwarzschild null geodesics in spacetimes with spatial dimensions 4 and 6. In all these
cases, the elliptic function approach allows one to find the special cases when explicit analytic
solutions are available with ease (simply by looking at the values of parameters for which the
elliptic function in question collapses into a periodic one).

Finally, we applied the formalism to describe the null geodesics of the Ellis wormhole
and found an expansion for the angle of deflection in this case.

After the appearance of the first version of this paper on the archive, Betti Hartmann
pointed out to us that our results may be easily extended to the case of a Schwarzschild black
hole pierced by an infinitely cosmic string studied in [17]. One needs only to replace the
variable φ by δφ , where 0 < δ ! 1 is the deficit parameter. Similar remarks apply to the other
metrics studied in this paper.
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ABSTRACT

A method to calculate light curves of the gravitational microlensing of the Ellis wormhole is derived in the
weak-field limit. In this limit, lensing by the wormhole produces one image outside the Einstein ring and another
image inside. The weak-field hypothesis is a good approximation in Galactic lensing if the throat radius is less
than 1011 km. The light curves calculated have gutters of approximately 4% immediately outside the Einstein
ring crossing times. The magnification of the Ellis wormhole lensing is generally less than that of Schwarzschild
lensing. The optical depths and event rates are calculated for the Galactic bulge and Large Magellanic Cloud
fields according to bound and unbound hypotheses. If the wormholes have throat radii between 100 and 107 km,
are bound to the galaxy, and have a number density that is approximately that of ordinary stars, detection can
be achieved by reanalyzing past data. If the wormholes are unbound, detection using past data is impossible.

Key words: gravitational lensing: micro

Online-only material: color figures

1. INTRODUCTION

A solution of the Einstein equation that connects distant points
of space–time was introduced by Einstein & Rosen (1935).
This “Einstein–Rosen bridge” was the first solution to later
be referred to as a wormhole. Initially, this type of solution
was just a trivial or teaching example of mathematical physics.
However, Morris & Thorne (1988) proved that some wormholes
are “traversable,” i.e., space and time travel can be achieved
by passing through the wormholes. They also showed that the
existence of a wormhole requires exotic matter that violates
the null energy condition. Although they are very exotic, the
existence of wormholes has not been ruled out in theory. Inspired
by the Morris–Thorne paper, there have been a number of
theoretical works (see Visser 1995; Lobo 2008, and references
therein) on wormholes. The curious properties of wormholes,
such as time travel, energy conditions, space–time foams,
and growth of a wormhole in an accelerating universe, have
been studied. Although there have been enthusiastic theoretical
studies, studies searching for real evidence of the existence of
wormholes are scarce. Only a few attempts have been made to
show the existence or nonexistence of wormholes.

A possible observational method that has been proposed to
detect or exclude the existence of wormholes is the application
of optical gravitational lensing. The gravitational lensing of
wormholes was pioneered by Cramer et al. (1995), who inferred
that some wormholes show “negative-mass” lensing. They
showed that the light curve of the negative-mass lensing event
of a distant star has singular double peaks. Several authors
subsequently conducted theoretical studies on detectability
(Safonova et al. 2002; Bogdanov & Cherepashchuk 2008).
Another gravitational lensing method employing gamma rays
was proposed by Torres et al. (1998), who postulated that the
singular negative-mass lensing of distant active galactic nuclei
causes a sharp spike of gamma rays and may be observed
as double-peaked gamma-ray bursts. They analyzed BASTE
data and set a limit for the density of the negative-mass
objects.

There have been several recent works (Shatskii 2004; Perlick
2004; Nandi et al. 2006; Rahaman et al. 2007; Dey & Sen

2008) on the gravitational lensing of wormholes as structures
of space–time. Such studies are expected to unveil lensing
properties directly from the space–time structure. One study
(Dey & Sen 2008) calculated the deflection angle of light due to
the Ellis wormhole, whose asymptotic mass at infinity is zero.
The massless wormhole is particularly interesting because it is
expected to have unique gravitational lensing effects. The Ellis
wormhole is expressed by the line element

ds2 = dt2 − dr2 − (r2 + a2)(dθ2 + sin2(θ )dφ2), (1)

where a is the throat radius of the wormhole. This type of worm-
hole was first introduced by Ellis (1973) as a massless scalar
field. Later, Morris & Thorne (1988) studied this wormhole and
proved it to be traversable. The dynamical features were stud-
ied by Shinkai & Hayward (2002), who showed that Gaussian
perturbation causes either explosion to an inflationary universe
or collapse to a black hole. Das & Kar (2005) showed that the
tachyon condensate can be a source for the Ellis geometry.

In this paper, we derive the light curve of lensing by the
Ellis wormhole and discuss its detectability. In Section 2, we
discuss gravitational lensing by the Ellis wormhole in the weak-
field limit. The light curves of wormhole events are discussed
in Section 3. The validity of the weak-field limit is discussed
in Section 4. The optical depth and event rate are discussed in
Section 5. The results are summarized in Section 6.

2. GRAVITATIONAL LENSING

Magnification of the apparent brightness of a distant star by
the gravitational lensing effect of another star was predicted by
Einstein (1936). This kind of lensing effect is called “microlens-
ing” because the images produced by the gravitational lensing
are very close to each other and are difficult for the observer
to resolve. The only observable effect is the changing appar-
ent brightness of the source star. This effect was discovered in
1993 (Udalski et al. 1993; Alcock et al. 1993; Aubourg et al.
1993) and has been used to detect astronomical objects that do
not emit observable signals (such as visible light, radio waves,
and X-rays) or are too faint to observe. Microlensing has suc-
cessfully been applied to detect extrasolar planets (Bond et al.
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Figure 2. Source and image trajectories in the sky from the position of the
observer.
(A color version of this figure is available in the online journal.)

ring crossing times (t = t0 ± tE). The depth of the gutters is
about 4% from the baseline. Amazingly, the star becomes fainter
than normal in terms of apparent brightness in the gutters. This
means that the Ellis wormhole lensing has off-center diver-
gence. In conventional gravitational lensing theory (Schneider
et al. 1992), the convergence of light is expressed by a convo-
lution of the surface mass density. Thus, we need to introduce
negative mass to describe a diverging lens (like a concave lens
in optics) by the Ellis wormhole. However, negative mass is
not a physical entity. Since the lensing by the Ellis wormhole
is converging at the center, lensing at some other place must
be diverging because the wormhole has zero asymptotic mass
and hence converging and diverging effects are compensated for
each other in total.

For β̂o > 1.0, the light curve of the wormhole has a basin
at t0 and no peak. Using these features, discrimination from
Schwarzschild lensing can be achieved. Equations (7) and (34)
indicate that physical parameters (DL, a, and vT ) are degenerate
in tE and cannot be derived by fitting the light curve data. This
situation is the same as that for Schwarzschild lensing. To obtain
or constrain these values, observations of the finite-source effect
(Nemiroff & Wickramasinghe 1994) or parallax (Alcock et al.
1995) are necessary. Astrometry gives a method for breaking
the degeneracy as discussed later.

In analogy with the center of the mass distribution, the
centroid position of the light distribution of a gravitationally
microlensed source is given by

θ̂pc = A1θ̂1 + A2θ̂2

A
. (35)

In making numerical figures, we employ x–y coordinates in the
way that the center is chosen as the location of the Ellis worm-
hole, the x-axis is taken along the direction of the source motion
and the y-axis is perpendicular to the source motion. See Figure 5
for the image centroid trajectories for β̂0 = 0.2, 0.5, 1.0, 1.5.
For each β̂0, the respective maximum differences between the

Figure 3. Sketch of the relation between the source trajectory and the lens
(wormhole) in the sky. All quantities are normalized by the angular Einstein
radius θE .

image centroid position by the Ellis wormhole and that by the
Schwarzschild one are −0.03,−0.08,−0.16,−0.20 in the units
of the Einstein ring radius, respectively. This implies that the
astrometric lensing by the Ellis wormhole is relatively weaker
than that by the Schwarzschild one.

In the weak-field region, the suppression of the anomalous
shift of the image centroid position is because the bending an-
gle by the Ellis wormhole is proportional to the inverse squared
impact parameter, whereas that by the Schwarzschild lens de-
pends on the inverse impact parameter. Figure 6 shows the rel-
ative displacement of the image centroid with respect to the
source position that is assumed to be in uniform linear motion.
The maximum vertical displacements are 0.06, 0.14, 0.18, 0.15
for β̂0 = 0.2, 0.5, 1.0, 1.5, respectively. Here, a key ques-
tion is whether the Ellis lensing and the Schwarzschild one
are distinguished from the centroid displacement curve. The
relative displacement trajectory by the Schwarzschild lens is
known to be an ellipse (Walker 1995; Jeong et al. 1999). It
is natural to ask whether the displacement curve by the Ellis
wormhole lens is also an ellipse. Figure 6 shows that the rel-
ative trajectory by the Ellis lens looks like an ellipse but has
a small difference. The shape is symmetric along the x-axis
but slightly asymmetric along the y-axis like a tree leaf, par-
ticularly for β̂0 = 0.2. Figure 6, however, shows that such a
deviation of the relative trajectory from elliptic orbits is very
small. Another difference is that the relative displacement at
large t, for instance t = −20 or 20, is dependent strongly
on the Ellis lens or the Schwarzschild one. This is because
the asymptotic behavior of the centroid displacement is differ-
ent (β̂−2 or β̂−1). In other words, the displacement effect by
the Ellis lens goes away faster. This suggests that a long-term
observation including a tail part of the centroid curve is re-
quired to distinguish the Ellis lenses by astrometric observations
alone.

The detectability of the image centroid displacements of the
background star depends on the timescale called the Einstein
radius crossing time tE that depends on the transverse velocity
vT . There is no reliable estimate of vT for wormholes. Following
Abe (2010), we assume that the velocity of the wormhole is
approximately equal to the rotation velocity of stars (vT =
220 km s−1) if it is bound to the Galaxy. If the wormhole is not
bound to our Galaxy, the transverse velocity would be much
higher. We assume vT = 5000 km s−1 (Safonova et al. 2002)
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Figure 3. Sketch of the relation between the source trajectory and the lens
(wormhole) in the sky. All quantities are normalized by the angular Einstein
radius θE.

In conventional gravitational lensing theory (Schneider et al.
1992), the convergence of light is expressed by a convolution of
the surface mass density. Thus, we need to introduce negative
mass to describe divergent lensing by the Ellis wormhole.

However, negative mass is not a physical entity. As the lensing
by the Ellis wormhole is convergent at the center, lensing at some
other place must be divergent because the wormhole has zero
asymptotic mass. For β̂0 > 1.0, the light curve of the wormhole
has a basin at t0 and no peak. Using these features, discrimination
from Schwarzschild lensing can be achieved. Equations (7) and
(20) indicate that the physical parameters (DL, a, and vT) are
degenerate in tE and cannot be derived by fitting the light-curve
data. This situation is the same as that for Schwarzschild lensing.
To obtain or constrain these values, observations of the finite-
source effect (Nemiroff & Wickramasinghe 1994) or parallax
(Alcock et al. 1995) are necessary.

The detectability of the magnification of the star brightness
depends on the timescale. The Einstein radius crossing time
tE depends on the transverse velocity vT. There is no reliable
estimate of vT for wormholes. Here we assume that the velocity
of the wormhole is approximately equal to the rotation velocity
of stars (vT = 220 km s−1) if it is bound to the Galaxy.
If the wormhole is not bound to our Galaxy, the transverse
velocity would be much higher. We assume vT = 5000 km s−1

(Safonova et al. 2002) for the unbound wormhole. Table 2
shows the Einstein radius crossing times of the Ellis wormhole
lensings for the Galactic bulge and LMC in both bound and

Figure 4. Light curves for β̂0 = 0.2 (top left), β̂0 = 0.5 (top right), β̂0 = 1.0 (bottom left), and β̂0 = 1.5 (bottom right). Thick red lines are the light curves for
wormholes. Thin green lines are corresponding light curves for Schwarzschild lenses.
(A color version of this figure is available in the online journal.)
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Does this demagnification 
conclude wormholes?
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To answer this, 
we introduced a one-parameter model of 
a weak-field metric 

The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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((33))  n=1 : Schwarzschild metric
          n=2 : Ellis Worm Hole (EWH) 
((44))  n>1 : zero ADM mass (massless)

((11))  static and asymptotically flat
((22))  only in the weak field

Kitamura, Nakajima, HA (2013)

Inverse power
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After a conformal transformation, 

The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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Deflection angle of light is calculated 
in the textbook manner as 

The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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n=1 : Stars and BHs 

n=2 : Ellis Worm Hole (EWH) 

n=0 : Singular Isothermal
            Sphere (SIS) 

This one-parameter model is used 
by Tsukamoto and Harada (2012, 2013). 

Deflection angle of light is written as  
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HHooww  eexxoottiicc  iiss  tthhiiss  lleennss  mmooddeell??  

In the standard lens theory (in GR), 

The larger the power n, the more likely the demagnifica-
tion. One might guess that demagnification could be

caused for a smaller !̂, especially !̂ ¼ 0. However, this
is not the case. Equation (13) suggests that the total

demagnification could occur only when !̂ is small but
larger than the critical value 2=ðnþ 1Þ under a large-n
approximation.

Note that the compatibility of the assumption !̂< 1 and
Eq. (13) implies n > 1. Namely, Eq. (13) becomes a better
approximation as n grows larger than unity.

The above argument is based on the near-zone approxi-

mation (!̂< 1). For a test of the analytic result, we per-
form numerical calculations. We consider n ¼ 10, which
might be one of the higher-dimensional models inspired by
string theory. Equation (13) suggests that demagnification

of the total lensed images could occur only for !̂>
2=11 ¼ 0:182. Figure 1 shows numerical results for n ¼
1, 2, 3, and 10. In the case of n ¼ 10, the analytic result for
the critical value !̂ ¼ 2=11 ¼ 0:182 is in good agreement

with the numerical one, !̂ ¼ 0:187.
Figure 2 shows numerical light curves for n ¼ 1, 2, 3,

and 10. As the power n is larger, time-symmetric demag-
nification parts in the light curves become longer in time
and larger in depth. Cases of n ¼ 3 and 10 showmaximally

%10 and %60 percent depletion of the light, when the
source position is !̂% 1:1 and !̂% 0:7, respectively.
Before closing this section, we briefly mention an effec-

tive mass. A simple application of the standard lens theory
[26] suggests that the deflection (" ¼ !"=bn) and magnifi-
cation studied here correspond to a convergence (scaled
surface-mass density) of the form

#ðbÞ ¼ !"ð1& nÞ
2

1

bnþ1 : (14)

For n > 1, therefore, the effective surface-mass density of
the lens object is interpreted as negative in the framework
of the standard lens theory. This means that the matter (and
energy) need to be exotic if n > 1.

V. DISCUSSION AND CONCLUSION

We examined a gravitational lens model inspired by
modified gravity theories and exotic matter and energy.
By using an asymptotically flat, static, and spherically
symmetric spacetime model of which the metric depends
on the inverse distance to the power of positive n, it was
shown in the weak-field and thin-lens approximations that
demagnifying gravitational lenses could appear, provided
the impact parameter of light !̂ and the power n satisfy

FIG. 2 (color online). Numerical light curves for the same minimum impact parameter of the light trajectory !̂0 ¼ 0:1. The source
star moves at constant speed and the source position changes as !̂ðtÞ ¼ ð!̂2

0 þ t2Þ1=2, where time is normalized by the Einstein ring
radius crossing time. Top left, top right, bottom left, and bottom right panels correspond to n ¼ 1, 2, 3, and 10, respectively. For
convenience, a thin (red) line denotes Atot ¼ 1.

BRIEF REPORTS PHYSICAL REVIEW D 87, 027501 (2013)

027501-4

convergence (surface mass density) is

If ε>0 and n>1,  negative convergence
((ddiivveerrggeenntt  “lleennss”))

19年2月27日水曜日



convex lens  
AAnnaallooggyy  ttoo  ooppiiccaall  lleennsseess  ------

concave lens 

� > 0 � < 0
“SSttaannddaarrdd”  GGrraavv  LLeennss “DDiivveerrssiinngg”

unusual
19年2月27日水曜日

















      

FIG. 1: Repulsive lens model (ε < 0). Solid curves denote 1/θ̂n and straight lines mean θ̂ − β̂.

Their intersections correspond to image positions that are roots for the lens equation. There are

three cases: No image for a small β̂ (dot-dashed line), a single image for a particular β̂ (dotted

line), and two images for a large β̂ (dashed line). The two images are on the same side of the lens

object.

TABLE I: The sign of the convergence κ. It is the same as that of ε(1 − n) according to Eq. (3).

κ > 0 ε > 0 & n < 1

ε < 0 & n > 1

κ = 0 n = 1

κ < 0 ε > 0 & n > 1

ε < 0 & n < 1
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LLeennss  EEqquuaattiioonn  wwiitthh  tthhiinn  lleennss  aapppprrooxx..

The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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!̂ ¼ "̂ þ "̂

!̂nþ1
ð!̂> 0Þ; (18)

!̂ ¼ "̂ þ "̂

ð%!̂Þnþ1
ð!̂< 0Þ: (19)

Without loss of generality, we assume "̂> 0. Then,
Eq. (19) has no root satisfying !̂< 0, while Eq. (18) has
at most two positive roots. Figure 3 shows that there are
three cases of the image number. For a large impact
parameter case, two images appear on the same side with
respect to the lens position, while no image appears for a
small impact parameter. Then only one image appears only
when the impact parameter takes a particular value. Let us
focus on the two image cases, from which the single image
case can be discussed in the limit as the impact parameter
approaches the particular value.
By using Eq. (18), we obtain

#þ ¼ "̂

!̂
¼ 1þ 1

!̂nþ1
; (20)

FIG. 3 (color online). Repulsive lens model (" < 0). Solid
curves denote 1=!̂n and straight lines mean !̂% "̂. Their inter-
sections correspond to image positions that are roots for the lens
equation. There are three cases: No image for a small "̂ (dot-
dashed line), a single image for a particular "̂ (dotted line), and
two images for a large "̂ (dashed line). The two images are on
the same side of the lens object.

FIG. 4 (color online). $, #þ, and #% for " < 0. They are denoted by solid (blue), dotted (purple) and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3
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#̂nþ3 1" 1
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#̂nþ3

0
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(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as
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respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]
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If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
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though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.
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Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
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where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly
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where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain
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¼ 1" 1

#̂nþ1
; (11)
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To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the
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respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
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local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the
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Eq. (3).
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gated. See also Fig. 1 for % and $' that are numerically
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Three typical observables in GL

1) Image brightness (micro-lens)

2) Image shape (macro-lens)

3) Image motion (micro-lens)
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Demagnifying gravitational lenses toward hunting a clue of exotic matter and energy
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We examine a gravitational lens model inspired by modified gravity theories and exotic matter and

energy. We study an asymptotically flat, static, and spherically symmetric spacetime that is modified in

such a way that the spacetime metric depends on the inverse distance to the power of positive n in the

weak-field approximation. It is shown analytically and numerically that there is a lower limit on the source

angular displacement from the lens object to get demagnification. Demagnifying gravitational lenses

could appear, provided the source position ! and the power n satisfy !> 2=ðnþ 1Þ in the units of the

Einstein ring radius under a large-n approximation. Unusually, the total amplification of the lensed

images, though they are caused by the gravitational pull, could be less than unity. Therefore, time-

symmetric demagnification parts in numerical light curves by gravitational microlensing [F. Abe,

Astrophys. J. 725, 787 (2010)] may be evidence of an Ellis wormhole (being an example of traversable

wormholes), but they do not always prove it. Such a gravitational demagnification of the light might be

used for hunting a clue of exotic matter and energy that are described by an equation of state more general

than the Ellis wormhole case. Numerical calculations for the n ¼ 3 and 10 cases show maximally %10
and %60 percent depletion of the light, when the source position is !% 1:1 and !% 0:7, respectively.

DOI: 10.1103/PhysRevD.87.027501 PACS numbers: 04.40.&b, 95.30.Sf, 98.62.Sb

I. INTRODUCTION

The bending of light was the first experimental confir-
mation of the theory of general relativity. Nowadays,
gravitational lensing is one of the most important tools in
astronomy and cosmology. It is widely used for investigat-
ing extrasolar planets, dark matter, and dark energy.

Light bending is also of theoretical importance, in par-
ticular for studying a null structure of a spacetime. A
rigorous form of the bending angle plays an important
role in properly understanding a strong gravitational field
[1–5]. For example, strong gravitational lensing in a
Schwarzschild black hole was considered by Frittelli
et al. [1] and by Virbhadra and Ellis [2]; Virbhadra and
Ellis [3] later described strong gravitational lensing
by naked singularities; Eiroa et al. [4] treated Reissner-
Nordström black hole lensing; Perlick [5] discussed
lensing by a Barriola-Vilenkin monopole and also by an
Ellis wormhole.

One of the peculiar features of general relativity is that
the theory admits a nontrivial topology of a spacetime; for
instance, a wormhole. An Ellis wormhole is a particular
example of the Morris-Thorne traversable wormhole class
[6–8]. Many years ago, scattering problems in such space-
times were discussed (for instance, [9,10]). One remark-
able feature is that the Ellis wormhole has zero mass at the
spatial infinity, but it causes light deflection [9,10].
Moreover, gravitational lensing by wormholes has been
recently investigated as an observational probe of such an
exotic spacetime [5,11–16]. Several forms of the deflection
angle by the Ellis wormhole have been recently derived
and often used [5,13–18]. A reason for such differences has
been clarified [19,20].

According to recent numerical calculations by Abe [14],
time-symmetric demagnification parts in light curves could
appear by gravitational microlensing effects of the Ellis
wormhole. Is the time-symmetric demagnification evi-
dence for the Ellis wormhole? Is very interesting to address
this question. One reason is that wormholes are inevitably
related with violations of some energy conditions in phys-
ics [21]. For instance, dark energy is introduced to explain
the observed accelerated expansion of the universe by
means of an additional energy-momentum component in
the right-hand side of the Einstein equation. Furthermore,
the left-hand side of the Einstein equation, equivalently the
Einstein-Hilbert action, could be modified in various ways
(nonlinear curvature terms, higher dimensions, and so on)
inspired by string theory, loop quantum gravity, and so on.
Because of the nonlinear nature of gravity, modifications to
one (or both) side(s) of the Einstein equation might admit
spacetimes significantly different from the standard
Schwarzschild spacetime metric, even if the spacetime is
assumed to be asymptotically flat, static, and spherically
symmetric. One example is an Ellis wormhole (being an
example of traversable wormholes).
Inspired by a huge number of modified theories, this

brief paper assumes, in a phenomenological sense, that
an asymptotically flat, static, and spherically symmetric
modified spacetime could depend on the inverse distance to
the power of positive n in the weak-field approximation.
The Schwarzschild spacetime and the Ellis wormhole
correspond to n ¼ 1 and n ¼ 2, respectively. Note that
Birkhoff’s theorem could say that cases n ! 1 might be
nonvacuum, if the models were interpreted in the frame-
work of the standard Einstein equation.
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The slightly modified gravitational lensing in modified
gravity theories—such as a fourth-order fðRÞ gravity
theory—has attracted interest (e.g., Refs. [22–24]). It has
been shown that the total magnification of the lensed
images is stable and always larger than unity against a
small spherical perturbation of the Schwarzschild lens
[25]. This suggests that demagnifying gravitational lenses
would need a significantly modified structure of the space-
time. The main purpose of this paper is to discuss demag-
nifying gravitational lenses due to significantly modified
spacetimes.

We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED DEFLECTION ANGLE OF LIGHT

This paper assumes that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive n
in the weak-field approximation. We consider light prop-
agating through a four-dimensional spacetime, though the
whole spacetime may be higher-dimensional. The four-
dimensional spacetime metric is expressed as

ds2 ¼ $
!
1$ "1

rn

"
dt2 þ

!
1þ "2

rn

"
dr2

þ r2ðd!2 þ sin2!d"2Þ þOð"21; "22; "1"2Þ; (1)

where r is the circumference radius and "1 and "2 are
small bookkeeping parameters in the following iterative
calculations. Here, "1 and "2 may be either positive or
negative, respectively. A negative "1 and "2 for n ¼ 1
corresponds to a negative mass (in the linearized
Schwarzschild metric).

For investigating light propagation, it is useful below
to make a conformal transformation with a factor of
ð1$ "1=r

nÞ1=2. The null structure (such as the light propa-
gation) is not affected by the conformal transformation. At
the linear order of "1 and "2, the spacetime metric takes a
simpler form:

d!s2 ¼ $dt2 þ
!
1þ "

Rn

"
dR2 þ R2ðd!2 þ sin2!d"2Þ

þOð"2Þ; (2)

where " & n"1 þ "2 and

R2 & r2

ð1$ "1
rnÞ

: (3)

Note that only one parameter " enters the conformally
transformed metric.

For this metric, one can find the Lagrangian for a
massless particle. Without loss of generality, we focus
on the equatorial plane ! ¼ #=2, since the spacetime is
spherically symmetric. By using the constants of motion
associated with the timelike and rotational Killing

vectors, the deflection angle of light is calculated at the
linear order as

$ ¼ 2
Z 1

R0

d"ðRÞ
dR

dR$ # ¼ "

bn

Z #
2

0
cosnc dc þOð"2Þ;

(4)

where R0 and b denote the closest approach and the
impact parameter of the light ray, respectively. This
deflection angle recovers the Schwarzschild (n ¼ 1) and
Ellis wormhole (n ¼ 2) cases. For particular cases, the
above (always positive) integral factor becomes

Z #
2

0
cosnc dc ¼ ðn$ 1Þ!!

n!!

#

2
ðevennÞ;

¼ ðn$ 1Þ!!
n!!

ðoddnÞ;

¼
ffiffiffiffi
#

p

2

"ðnþ1
2 Þ

"ðnþ2
2 Þ ðreal n > 0Þ: (5)

Henceforth, the deflection angle is denoted simply as
$ðbÞ ¼ !"=bn by absorbing the numerical constant into
the !" parameter.

III. MODIFIED LENS EQUATION
AND ITS SOLUTIONS

Under the thin-lens approximation, it is useful to con-
sider the lens equation as [26]

% ¼ b

DL
$DLS

DS
$ðbÞ; (6)

where% denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
In units of the Einstein ring radius, Eq. (6) is rewritten as

%̂ ¼ !̂$ 1

!̂n
ð!̂> 0Þ; (7)

%̂ ¼ !̂þ 1

ð$!̂Þn
ð!̂< 0Þ; (8)

where %̂ & %=!E and !̂ & !=!E for the angular position of
the image ! & b=DL.
Let us consider two lines defined by Y ¼ 1=!̂n and Y ¼

!̂$ % in the !̂$ Y plane. For !̂> 0, therefore, we have
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DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. We wish to consider significant mag-
nification (or demagnification), which could occur for a
source in (or near) the Einstein ring. The Einstein ring is
defined for % ¼ 0 [26]. If " < 0, Eq. (6) has no positive
roots for % ¼ 0 because of the repulsive force in the
particular gravity model. For " > 0, on the other hand,
there is always a positive root corresponding to the
Einstein ring. The negative " case is of less astronomical
relevance. Therefore, let us consider the positive " case
(causing the gravitational pull) in the following.
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only one intersection of the two lines that corresponds to
one image position. Similarly, only one image appears for
!̂< 0.

For a general positive n (e.g., n ¼ 5), it is impossible to
find exact solutions for the modified lens equation. To
clarify the parameter dependence, we employ analytic
but approximate methods rather than numerical calcula-
tions. Furthermore, in astronomy only the significantly
amplified images become detectable in gravitational
microlensing. Such events occur only when a source such
as a distant star crosses the Einstein ring. We thus focus on
such an Einstein ring-crossing case as "̂< 1 in units of the
Einstein ring, for which Eqs. (7) and (8) are solved in the
Taylor series form with respect to "̂. We obtain

!̂þ ¼ 1þ 1

nþ 1
"̂þ 1

2

n

ðnþ 1Þ2 "̂
2 þOð"̂3Þ ð!̂> 0Þ;

(9)

!̂% ¼ %1þ 1

nþ 1
"̂% 1

2

n

ðnþ 1Þ2 "̂
2 þOð"̂3Þ ð!̂< 0Þ:

(10)

IV. DEMAGNIFICATION CONDITION

The amplification factor denoted as A is jð"=!Þ&
ðd"=d!Þj%1, namely, the inverse Jacobian of the gravita-
tional lens mapping between the source and image position
vectors [26]. By using Eqs. (9) and (10), the amplification
factor of each image, which is denoted by Aþ and A%,
respectively, becomes

A' ¼ 1

"̂ðnþ 1Þ
þOð"̂0Þ; (11)

where a difference between Aþ and A% appears at the next
order in "̂. The total amplification is thus

Atot ( Aþ þ A% ¼ 2

"̂ðnþ 1Þ
þOð"̂0Þ: (12)

For the Schwarzschild case (n ¼ 1), Atot ¼ 1="̂. This is
always larger than unity for "̂< 1, in concordance with the
well-known fact. Demagnification of the total lensed im-
ages could occur, however, if

"̂>
2

nþ 1
: (13)

FIG. 1 (color online). Total amplification factor of the lensed images as a function of the source position "̂ for n ¼ 1, 2, 3, and 10.
Top left, top right, bottom left, and bottom right panels correspond to n ¼ 1, 2, 3, and 10, respectively. In the case of n ¼ 10, the total
amplification factor is larger than unity for "̂< 0:187, whereas it is smaller for "̂> 0:187. For convenience, a thin (red) line denotes
Atot ¼ 1.
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The larger the power n, the more likely the demagnifica-
tion. One might guess that demagnification could be

caused for a smaller !̂, especially !̂ ¼ 0. However, this
is not the case. Equation (13) suggests that the total

demagnification could occur only when !̂ is small but
larger than the critical value 2=ðnþ 1Þ under a large-n
approximation.

Note that the compatibility of the assumption !̂< 1 and
Eq. (13) implies n > 1. Namely, Eq. (13) becomes a better
approximation as n grows larger than unity.

The above argument is based on the near-zone approxi-

mation (!̂< 1). For a test of the analytic result, we per-
form numerical calculations. We consider n ¼ 10, which
might be one of the higher-dimensional models inspired by
string theory. Equation (13) suggests that demagnification

of the total lensed images could occur only for !̂>
2=11 ¼ 0:182. Figure 1 shows numerical results for n ¼
1, 2, 3, and 10. In the case of n ¼ 10, the analytic result for
the critical value !̂ ¼ 2=11 ¼ 0:182 is in good agreement

with the numerical one, !̂ ¼ 0:187.
Figure 2 shows numerical light curves for n ¼ 1, 2, 3,

and 10. As the power n is larger, time-symmetric demag-
nification parts in the light curves become longer in time
and larger in depth. Cases of n ¼ 3 and 10 showmaximally

%10 and %60 percent depletion of the light, when the
source position is !̂% 1:1 and !̂% 0:7, respectively.
Before closing this section, we briefly mention an effec-

tive mass. A simple application of the standard lens theory
[26] suggests that the deflection (" ¼ !"=bn) and magnifi-
cation studied here correspond to a convergence (scaled
surface-mass density) of the form

#ðbÞ ¼ !"ð1& nÞ
2

1

bnþ1 : (14)

For n > 1, therefore, the effective surface-mass density of
the lens object is interpreted as negative in the framework
of the standard lens theory. This means that the matter (and
energy) need to be exotic if n > 1.

V. DISCUSSION AND CONCLUSION

We examined a gravitational lens model inspired by
modified gravity theories and exotic matter and energy.
By using an asymptotically flat, static, and spherically
symmetric spacetime model of which the metric depends
on the inverse distance to the power of positive n, it was
shown in the weak-field and thin-lens approximations that
demagnifying gravitational lenses could appear, provided
the impact parameter of light !̂ and the power n satisfy

FIG. 2 (color online). Numerical light curves for the same minimum impact parameter of the light trajectory !̂0 ¼ 0:1. The source
star moves at constant speed and the source position changes as !̂ðtÞ ¼ ð!̂2

0 þ t2Þ1=2, where time is normalized by the Einstein ring
radius crossing time. Top left, top right, bottom left, and bottom right panels correspond to n ¼ 1, 2, 3, and 10, respectively. For
convenience, a thin (red) line denotes Atot ¼ 1.
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Gravitational lens models with negative convergence (surface mass density projected onto the lens

plane) inspired by modified gravity theories, exotic matter, and energy have been recently discussed in

such a way that a static and spherically symmetric modified spacetime metric depends on the inverse

distance to the power of positive n (n ¼ 1 for Schwarzschild metric, n ¼ 2 for Ellis wormhole) in the

weak-field approximation [T. Kitamura, K. Nakajima, and H. Asada, Phys. Rev. D 87, 027501 (2013)],

and it has been shown that demagnification of images could occur for n > 1 lens models associated with

exotic matter (and energy), though they cause the gravitational pull on light rays. The present paper

considers gravitational lensing shear by the demagnifying lens models and other models such as negative-

mass compact objects causing the gravitational repulsion on light rays like a concave lens. It is shown that

images by the lens models for the gravitational pull are tangentially elongated, whereas those by the

repulsive ones are radially distorted. This feature of lensed image shapes may be used for searching

(or constraining) localized exotic matter or energy with gravitational lensing surveys. It is suggested also

that an underdense region such as a cosmic void might produce radially elongated images of background

galaxies rather than tangential ones.

DOI: 10.1103/PhysRevD.88.024049 PACS numbers: 04.40."b, 95.30.Sf, 98.62.Sb

I. INTRODUCTION

The bending of light was used for the first experimental
confirmation of the theory of general relativity. In modern
astronomy and cosmology, the gravitational lensing is
widely used, as one of the important tools, for investigating
extrasolar planets, dark matter, and dark energy.

The light bending is also of theoretical importance, in
particular for studying a null structure of a spacetime.
A rigorous form of the bending angle plays an important
role in understanding properly a strong gravitational field
[1–5]. For example, strong gravitational lensing in a
Schwarzschild black hole was considered by Frittelli,
Kling, and Newman [1] and by Virbhadra and Ellis [2];
Virbhadra and Ellis [3] and Virbhadra and Keeton [6] later
described the strong gravitational lensing by naked singu-
larities; Eiroa, Romero, and Torres [4] treated Reissner-
Nordström black hole lensing; Perlick [5] discussed the
lensing by a Barriola-Vilenkin monopole and also that by
an Ellis wormhole.

One of the peculiar features of general relativity is that
the theory admits a nontrivial topology of a spacetime, for
instance a wormhole. An Ellis wormhole is a particular
example of the Morris-Thorne traversable wormhole class
[7–9]. Furthermore, wormholes are inevitably related with
violations of some energy conditions in physics [10]. For
instance, dark energy is introduced to explain the observed
accelerated expansion of the universe by means of an
additional energy-momentum component in the right-
hand side of the Einstein equation. Furthermore, the left-
hand side of the Einstein equation, equivalently the
Einstein-Hilbert action, could be modified in various
ways (nonlinear curvature terms, higher dimensions, and

so on) inspired by string theory, loop quantum gravity, and
so on. Because of the nonlinear nature of gravity, modifi-
cations to one (or both) side of the Einstein equation might
admit spacetimes significantly different from the standard
Schwarzschild spacetime metric, even if the spacetime is
assumed to be asymptotically flat, static, and spherically
symmetric. One example is an Ellis wormhole (being an
example of traversable wormholes).
Many yeas ago, scattering problems in wormhole space-

times were discussed (for instance, [11,12]). Interestingly,
the Ellis wormhole has a zero mass at the spatial infinity
but it causes the light deflection [11,12]. Moreover, the
gravitational lensing by wormholes has been recently
investigated as an observational probe of such an exotic
spacetime [5,13–20]. Several forms of the deflection angle
by the Ellis wormhole have been recently derived and often
used [5,15–18,21,22]. A reason for such differences has
been clarified [23,24].
Small changes in gravitational lensing in modified grav-

ity theories such as fðRÞ and fourth-order gravity have
been studied (e.g., [25–28]). Inspired by a number of works
on modifications in gravitational lensing, Kitamura et al.
[29] assume, in a phenomenological sense, that an asymp-
totically flat, static, and spherically symmetric modified
spacetime could depend on the inverse distance to the
power of positive n in the weak-field approximation. The
Schwarzschild spacetime and the Ellis wormhole corre-
spond to n ¼ 1 and n ¼ 2, respectively, so that these
spacetimes can be expressed as a one-parameter family.
Note that Birkhoff’s theorem could say that cases n ! 1
might be nonvacuum, if the models were interpreted in the
framework of the standard Einstein equation.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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where the x and y coordinates are chosen along the radial
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To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
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local coordinates. Hence, one can immediately obtain
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If and only if n >"1, one can show $" > $þ.
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gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
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Eq. (3).
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Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
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symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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Axisymmetry enables to diagonalise 
the magnification matrix as    

! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
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DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
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(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@

1
CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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Finally, we mention the dependence on the exponent n.
A significantly elongated case such as a giant arc appears
near the Einstein ring (!̂! 1), around which Eqs. (11) and
(12) are expanded as

"þ ¼ ðnþ 1Þð!̂& 1Þ & ðnþ 1Þðnþ 2Þ
2

ð!̂& 1Þ2

þOðð!̂& 1Þ3Þ; (15)

"& ¼ nþ 1& nðnþ 1Þð!̂& 1Þ þOðð!̂& 1Þ2Þ; (16)

where we used the identity !̂ ¼ 1þ ð!̂& 1Þ. The ratio of
the tangential elongation to the radial one (corresponding
to the arc shape) is

"&
"þ

¼ 1

!̂& 1
þ

!
1& n

2

"
þOð!̂& 1Þ: (17)

This suggests that, for the fixed observed lens position !̂,
elongation of images becomes weaker, when n becomes
larger. This dependence on n is true of also the secondary
image.

B. " < 0 case

Let us study the " < 0 case. In the units of the Einstein
ring radius, Eq. (4) is rewritten in the vectorial form as

FIG. 2 (color online). Numerical figures of lensed images for
attractive (" > 0) and repulsive (" < 0) cases. They are denoted
by dashed curves. We take n ¼ 2. The source for each case is
denoted by solid circles, which are located on the horizontal axis
and the vertical one for " < 0 and " > 0, respectively.

FIG. 1 (color online). #, "þ, and "& for " > 0. They are denoted by solid (blue), dotted (purple), and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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! ¼ b

DL
"DLS

DS
"ðbÞ; (4)

where ! denotes the angular position of the source andDL,
DS, DLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively.

For " > 0, there is always a positive root corresponding
to the Einstein ring for ! ¼ 0. The Einstein ring radius is
defined as [36]

#E %
!
!"DLS

DSD
n
L

" 1
nþ1
: (5)

If " < 0, on the other hand, Eq. (4) has no positive root for
! ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for " < 0 as

#E %
!j !"jDLS

DSD
n
L

" 1
nþ1
; (6)

though the Einstein ring does not appear for this case.
This radius gives a typical angular size for " < 0 lenses.

III. GRAVITATIONAL LENSING SHEAR

A. " > 0 case

Let us begin with a " > 0 case. As already stated, the
matter (and energy) need to be exotic if n > 1. In the units
of the Einstein ring radius, Eq. (4) is rewritten in the
vectorial form as

!̂ ¼ "̂ " "̂

#̂nþ1
ð#̂> 0Þ; (7)

!̂ ¼ "̂ " "̂

ð"#̂Þnþ1
ð#̂< 0Þ; (8)

where we normalize !̂ % !=#E and #̂ % #=#E for the
angular position of the image # % b=DL, and !̂ and "̂
denote the corresponding vectors. There is always
one image for #̂> 0, while the other image appears for
#̂< 0 [29].

Let us study the lensing shear that is generally defined
via the magnification matrix Aij % @!i=@#j [36]. After
straightforward computations, the magnification matrix
for #̂> 0 becomes explicitly

ðAijÞ ¼
1" 1

#̂nþ1 þ ðnþ 1Þ #̂x#̂x
#̂nþ3 ðnþ 1Þ #̂x#̂y

#̂nþ3

ðnþ 1Þ #̂x#̂y
#̂nþ3 1" 1

#̂nþ1 þ ðnþ 1Þ #̂y#̂y
#̂nþ3

0
B@
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CA:

(9)

It is diagonalized by using its eigenvalues $' as

ðAijÞ ¼
1" %" & 0

0 1" %þ &

 !
%

$" 0

0 $þ

 !
; (10)

where the x and y coordinates are chosen along the radial
and tangential directions, respectively, such that ð#̂iÞ ¼
ð#̂; 0Þ and ð!̂iÞ ¼ ð!̂; 0Þ. Hence, the radial elongation factor
is 1=$", while the tangential one is 1=$þ.
First, let us investigate the primary image (#̂> 0). By

using Eq. (7), we obtain

$þ ¼ !̂

#̂
¼ 1" 1

#̂nþ1
; (11)

$" ¼ d!̂

d#̂
¼ 1þ n

#̂nþ1
: (12)

To reach Eqs. (11) and (12), we need several steps,
where first the Jacobian matrix is computed and next
the matrix is diagonalized. Note that, for our axially
symmetric cases, there is a shortcut of deriving
Eqs. (11) and (12) without doing such lengthy calcula-
tions. In the shortcut, one may start with the x and y
coordinates that are locally chosen along the radial and
tangential directions, respectively, such that ð#̂iÞ ¼ ð#̂; 0Þ
and ð!̂iÞ ¼ ð!̂; 0Þ. Then, infinitesimal changes in !̂ and
"̂ can be written as ðd#̂iÞ ¼ ðd#̂; #̂d'Þ and ðd!̂iÞ ¼
ðd!̂; !̂d'Þ, where ' denotes the azimuthal angle. The
axial symmetry allows that #̂ and !̂ are independent of
', which means that the off-diagonal terms vanish in the
local coordinates. Hence, one can immediately obtain
Eqs. (11) and (12) [37].
If and only if n >"1, one can show $" > $þ.

Therefore, the primary image is always tangentially elon-
gated. See also Fig. 1 for % and $' that are numerically
calculated for n ¼ 0:5, 1, 2, and 3. For these four cases,
$" is always larger than $þ. The convergence % is positive
for n ¼ 0:5, while it is negative for n ¼ 2 and 3. It follows
that n ¼ 1 corresponding to the Schwarzschild lens leads
to % ¼ 0.
Equations (11) and (12) give the convergence and the

shear as

% ¼ 1" $þ þ $"
2

¼ 1" n

2

1

#̂nþ1
; (13)

& ¼ $þ " $"
2

¼ " 1þ n

2

1

#̂nþ1
; (14)

respectively. It follows that this result of % agrees with
Eq. (3).
Next, we study the secondary image (#̂< 0). By using

Eq. (8), one can show $" > $þ, if and only if n >"1.
Hence, the secondary image also is tangentially elongated.
See also Fig. 2 for " > 0 and n ¼ 2, where one can see a
pair of tangential images.
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Finally, we mention the dependence on the exponent n.
A significantly elongated case such as a giant arc appears
near the Einstein ring (!̂! 1), around which Eqs. (11) and
(12) are expanded as

"þ ¼ ðnþ 1Þð!̂& 1Þ & ðnþ 1Þðnþ 2Þ
2

ð!̂& 1Þ2

þOðð!̂& 1Þ3Þ; (15)

"& ¼ nþ 1& nðnþ 1Þð!̂& 1Þ þOðð!̂& 1Þ2Þ; (16)

where we used the identity !̂ ¼ 1þ ð!̂& 1Þ. The ratio of
the tangential elongation to the radial one (corresponding
to the arc shape) is

"&
"þ

¼ 1

!̂& 1
þ

!
1& n

2

"
þOð!̂& 1Þ: (17)

This suggests that, for the fixed observed lens position !̂,
elongation of images becomes weaker, when n becomes
larger. This dependence on n is true of also the secondary
image.

B. " < 0 case

Let us study the " < 0 case. In the units of the Einstein
ring radius, Eq. (4) is rewritten in the vectorial form as

FIG. 2 (color online). Numerical figures of lensed images for
attractive (" > 0) and repulsive (" < 0) cases. They are denoted
by dashed curves. We take n ¼ 2. The source for each case is
denoted by solid circles, which are located on the horizontal axis
and the vertical one for " < 0 and " > 0, respectively.

FIG. 1 (color online). #, "þ, and "& for " > 0. They are denoted by solid (blue), dotted (purple), and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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!̂ ¼ "̂ þ "̂

!̂nþ1
ð!̂> 0Þ; (18)

!̂ ¼ "̂ þ "̂

ð%!̂Þnþ1
ð!̂< 0Þ: (19)

Without loss of generality, we assume "̂> 0. Then,
Eq. (19) has no root satisfying !̂< 0, while Eq. (18) has
at most two positive roots. Figure 3 shows that there are
three cases of the image number. For a large impact
parameter case, two images appear on the same side with
respect to the lens position, while no image appears for a
small impact parameter. Then only one image appears only
when the impact parameter takes a particular value. Let us
focus on the two image cases, from which the single image
case can be discussed in the limit as the impact parameter
approaches the particular value.
By using Eq. (18), we obtain

#þ ¼ "̂

!̂
¼ 1þ 1

!̂nþ1
; (20)

FIG. 3 (color online). Repulsive lens model (" < 0). Solid
curves denote 1=!̂n and straight lines mean !̂% "̂. Their inter-
sections correspond to image positions that are roots for the lens
equation. There are three cases: No image for a small "̂ (dot-
dashed line), a single image for a particular "̂ (dotted line), and
two images for a large "̂ (dashed line). The two images are on
the same side of the lens object.

FIG. 4 (color online). $, #þ, and #% for " < 0. They are denoted by solid (blue), dotted (purple) and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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ð%!̂Þnþ1
ð!̂< 0Þ: (19)

Without loss of generality, we assume "̂> 0. Then,
Eq. (19) has no root satisfying !̂< 0, while Eq. (18) has
at most two positive roots. Figure 3 shows that there are
three cases of the image number. For a large impact
parameter case, two images appear on the same side with
respect to the lens position, while no image appears for a
small impact parameter. Then only one image appears only
when the impact parameter takes a particular value. Let us
focus on the two image cases, from which the single image
case can be discussed in the limit as the impact parameter
approaches the particular value.
By using Eq. (18), we obtain

#þ ¼ "̂

!̂
¼ 1þ 1

!̂nþ1
; (20)

FIG. 3 (color online). Repulsive lens model (" < 0). Solid
curves denote 1=!̂n and straight lines mean !̂% "̂. Their inter-
sections correspond to image positions that are roots for the lens
equation. There are three cases: No image for a small "̂ (dot-
dashed line), a single image for a particular "̂ (dotted line), and
two images for a large "̂ (dashed line). The two images are on
the same side of the lens object.

FIG. 4 (color online). $, #þ, and #% for " < 0. They are denoted by solid (blue), dotted (purple) and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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Without loss of generality, we assume "̂> 0. Then,
Eq. (19) has no root satisfying !̂< 0, while Eq. (18) has
at most two positive roots. Figure 3 shows that there are
three cases of the image number. For a large impact
parameter case, two images appear on the same side with
respect to the lens position, while no image appears for a
small impact parameter. Then only one image appears only
when the impact parameter takes a particular value. Let us
focus on the two image cases, from which the single image
case can be discussed in the limit as the impact parameter
approaches the particular value.
By using Eq. (18), we obtain
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¼ 1þ 1
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FIG. 3 (color online). Repulsive lens model (" < 0). Solid
curves denote 1=!̂n and straight lines mean !̂% "̂. Their inter-
sections correspond to image positions that are roots for the lens
equation. There are three cases: No image for a small "̂ (dot-
dashed line), a single image for a particular "̂ (dotted line), and
two images for a large "̂ (dashed line). The two images are on
the same side of the lens object.

FIG. 4 (color online). $, #þ, and #% for " < 0. They are denoted by solid (blue), dotted (purple) and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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!! ¼ d"̂

d#̂
¼ 1! n

#̂nþ1
: (21)

One can show that !! < !þ, if and only if n >!1. Hence,
both images are everywhere radially elongated. See also
Fig. 4 for $ and !$ that are numerically calculated for
n ¼ 0:5, 1, 2, and 3. For these four cases, !þ is always
larger than !!. The convergence $ is negative for n ¼ 0:5,
while it is positive for n ¼ 2 and 3. It follows that n ¼ 1
corresponding to the (negative-mass) Schwarzschild lens
leads to $ ¼ 0.

Equations (20) and (21) give the shear as

% ¼ !þ ! !!
2

¼ 1þ n

2

1

#̂nþ1
: (22)

A repulsive case might correspond to the lensing by a
voidlike mass distribution. The above calculations assume
the flat (Minkowskian) background spacetime. If one
wishes to consider cosmological situations, the gravita-
tional potential and the mass density might correspond
to the scalar perturbation and the density contrast in
the cosmological perturbation approach based on the
Friedmann-Lemaitre background spacetime [36]. In this
cosmological counterpart, the present model with $< 0
might correspond to an underdense region called a cosmic
void, in which the local mass density is below the cosmic
mean density and the density contrast is thus negative. The
gravitational force on the light rays by the surrounding
region could be interpreted as repulsive (" < 0), because
the bending angle of light with respect to the center of the
spherical void might be negative. Therefore, cosmic voids
might correspond to a $< 0 and " < 0 case. Note that the
positive convergence due to the cosmic mean density is
taken into account in the definition of the cosmological
distances. There are very few galaxies in voids compared
with in a cluster of galaxies. Hence, it is difficult to inves-
tigate gravity inside a void by using galaxies as a tracer.
Gravitational lensing shear measurements would be
another tool for studying voids.

Before closing this section, we mention whether we can
distinguish radial elongation and a tangential one in
observations without knowing the lens position. Usually,

lens objects cannot be directly seen except for visible lens
objects such as galaxies. In particular, exotic lens models
that are discussed in this paper might be invisible. In the
above calculations, the origin of the two-dimensional
coordinates is chosen as the center of the lens object, so
that the radial and tangential directions can be well defined.
For a pair of radially elongated images (" < 0), they are in
alignment with each other. For a pair of tangentially elon-
gated images (" > 0), they are parallel with each other.
Therefore, one can distinguish radial elongation from a
tangential one by measuring such an image alignment in
observations. See also Fig. 2 for " < 0 and n ¼ 2, where
one can see a pair of radial images.

IV. DISCUSSION AND CONCLUSION

We examined gravitational lens models inspired by
modified gravity theories, exotic matter, and energy. By
using an asymptotically flat, static, and spherically
symmetric spacetime model of which metric depends on
the inverse distance to the power of positive n, it was
shown in the weak-field and thin lens approximations
that images due to lens models for the gravitational pull
on light rays are tangentially elongated, whereas those by
the other models for the gravitational repulsion on light
rays are always radially distorted.
As a cosmological implication, it is suggested that

cosmic voids might correspond to a $< 0 and "<0 case
and hence they could produce radially elongated images
rather than tangential ones. It would be interesting to
investigate numerically light propagation through realistic
voids in cosmological simulations, because the present
model obeys a simple power law. It is left for future work.
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Finally, we mention the dependence on the exponent n.
A significantly elongated case such as a giant arc appears
near the Einstein ring (!̂! 1), around which Eqs. (11) and
(12) are expanded as

"þ ¼ ðnþ 1Þð!̂& 1Þ & ðnþ 1Þðnþ 2Þ
2

ð!̂& 1Þ2

þOðð!̂& 1Þ3Þ; (15)

"& ¼ nþ 1& nðnþ 1Þð!̂& 1Þ þOðð!̂& 1Þ2Þ; (16)

where we used the identity !̂ ¼ 1þ ð!̂& 1Þ. The ratio of
the tangential elongation to the radial one (corresponding
to the arc shape) is

"&
"þ

¼ 1

!̂& 1
þ

!
1& n

2

"
þOð!̂& 1Þ: (17)

This suggests that, for the fixed observed lens position !̂,
elongation of images becomes weaker, when n becomes
larger. This dependence on n is true of also the secondary
image.

B. " < 0 case

Let us study the " < 0 case. In the units of the Einstein
ring radius, Eq. (4) is rewritten in the vectorial form as

FIG. 2 (color online). Numerical figures of lensed images for
attractive (" > 0) and repulsive (" < 0) cases. They are denoted
by dashed curves. We take n ¼ 2. The source for each case is
denoted by solid circles, which are located on the horizontal axis
and the vertical one for " < 0 and " > 0, respectively.

FIG. 1 (color online). #, "þ, and "& for " > 0. They are denoted by solid (blue), dotted (purple), and dashed (red) curves,
respectively. The horizontal axis denotes the image position ! in the units of the Einstein radius. Top left: n ¼ 0:5. Top right: n ¼ 1.
Bottom left: n ¼ 2. Bottom right: n ¼ 3.
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Microlensed image centroid motions by an exotic lens object with
negative convergence or negative mass

Takao Kitamura, Koji Izumi, Koki Nakajima, Chisaki Hagiwara, and Hideki Asada
Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

(Received 25 July 2013; published 3 April 2014)

Gravitational lens models with negative convergence inspired by modified gravity theories, exotic
matter, and energy have been recently examined in such a way that a static and spherically symmetric
modified spacetime metric depends on the inverse distance to the nth power (n ¼ 1 for Schwarzschild
metric, n ¼ 2 for Ellis wormhole, and n ≠ 1 for an extended spherical distribution of matter such as an
isothermal sphere) in the weak-field approximation. Some of the models act as if a convex lens, whereas the
others are repulsive on light rays like a concave lens. The present paper considers microlensed image
centroid motions by the exotic lens models. Numerical calculations show that, for large n cases in the
convex-type models, the centroid shift from the source position might move on a multiply connected curve
like a bow tie, while it is known to move on an ellipse for the n ¼ 1 case and to move on an oval curve for
n ¼ 2. The distinctive feature of the microlensed image centroid may be used for searching
(or constraining) localized exotic matter or energy with astrometric observations. It is shown also that
the centroid shift trajectory for concave-type repulsive models might be elongated vertically to the source
motion direction like a prolate spheroid, whereas that for convex-type models such as the Schwarzschild
one is tangentially elongated like an oblate spheroid.

DOI: 10.1103/PhysRevD.89.084020 PACS numbers: 04.40.-b, 95.30.Sf, 98.62.Sb

I. INTRODUCTION

The bending of light is among the first experimental
confirmations of the theory of general relativity. As one of
the important tools in modern astronomy and cosmology,
the gravitational lensing is widely used for investigating
extrasolar planets, dark matter, and dark energy.
The light bending is also of theoretical importance, in

particular for studying a null structure of a spacetime.
A rigorous form of the bending angle plays an important
role in understanding properly a strong gravitational
field [1–6,8,9]. For example, strong gravitational lensing
in a Schwarzschild black hole was considered by
Frittelli, Kling, and Newman [1], by Virbhadra and
Ellis [2], and more comprehensively by Virbhadra [3];
Virbhadra, Narasimha, and Chitre [4] studied distinctive
lensing features of naked singularities. Virbhadra and Ellis
[5] and Virbhadra and Keeton [6] later described the strong
gravitational lensing by naked singularities; DeAndrea and
Alexander [7] discussed the lensing by naked singularities
to test the cosmic censorship hypothesis; Eiroa, Romero,
and Torres [8] treated Reissner–Nordström black hole
lensing; Perlick [9] discussed the lensing by a Barriola–
Vilenkin monopole and also that by an Ellis wormhole.
One of peculiar features of general relativity is that the

theory admits a nontrivial topology of a spacetime, for
instance, a wormhole. An Ellis wormhole is a particular
example of the Morris–Thorne traversable wormhole class
[10–12]. Furthermore, wormholes are inevitably related
with violations of some energy conditions in physics [13].
For instance, dark energy is introduced to explain the

observed accelerated expansion of the Universe by means
of an additional energy-momentum component on the
right-hand side of the Einstein equation. Furthermore,
the left-hand side of the Einstein equation, equivalently
the Einstein– Hilbert action, could be modified in various
ways (nonlinear curvature terms, higher dimensions, and so
on) inspired by string theory, loop quantum gravity, and so
on. Because of the nonlinear nature of gravity, modifica-
tions to one (or both) side(s) of the Einstein equation might
admit spacetimes significantly different from the standard
Schwarzschild spacetime metric, even if the spacetime is
assumed to be asymptotically flat, static, and spherically
symmetric. One example is an Ellis wormhole (being an
example of traversable wormholes).
Many years ago, scattering problems in wormhole

spacetimes were discussed (for instance, Refs. [14,15]).
Interestingly, the Ellis wormhole has a zero mass at the
spatial infinity, but it causes the light deflection [14,15].
Moreover, the gravitational lensing by wormholes has been
recently investigated as an observational probe of such an
exotic spacetime [9,16–23]. Several forms of the deflection
angle by the Ellis wormhole have been recently derived and
often used [9,18–21,24,25]. A reason for such differences
has been clarified by several authors [26,27].
Small changes in gravitational lensing in modified

gravity theories such as fðRÞ and fourth-order gravity
have been studied (e.g., Refs. [28–31]). Furthermore,
Horvath, Gergely, and Hobill [32] studied lensing effects
with negative convergence by so-called tidal charges in the
Dadhich et al. solution, in which, for a braneworld black
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D. Modified lens equation: ε < 0 case

Next, let us mention ε < 0 case [36]. In the units of the Einstein ring radius, Eq. (4) is

rewritten in the vectorial form as

β̂ = θ̂ +
θ̂

θ̂n+1
(θ̂ > 0), (9)

β̂ = θ̂ +
θ̂

(−θ̂)n+1
(θ̂ < 0). (10)

Without loss of generality, we assume β̂ > 0. Then, Eq. (10) has no root satisfying θ̂ < 0,

while Eq. (9) has at most two positive roots. Figure 3 shows that there are three cases of

the image number. For a large impact parameter case, two images appear on the same side

with respect to the lens position, while no image appears for a small impact parameter. The

only one image appears only when the impact parameter takes a critical value. Let us focus

on the two image cases, from which the single image case can be discussed in the limit as

the impact parameter approaches the particular value.

III. MICROLENSED IMAGE CENTROID

A. Image centroid

Let us study the microlensed image centroid motions. In any case of ε > 0 and ε < 0, the

image positions are denoted by θ̂1 and θ̂2, and the corresponding amplification factors are

denoted by A1 and A2. Without loss of generality, we take θ̂1 > θ̂2. In analogy with the center

of the mass distribution, the centroid position of the light distribution of a gravitationally

microlensed source is given by

θ̂pc =
A1θ̂1 + A2θ̂2

Atot
, (11)

where Atot denotes the total amplification as A1 + A2. The corresponding scalar is defined

as θ̂pc ≡ (A1θ̂1 + A2θ̂2)A
−1
tot . Note that θ̂pc is positive, when the centroid is located on the

same side of the source with respect to the lens center.

The relative displacement of the image centroid with respect to the source position is

written as

δθ̂pc = θ̂pc − β̂. (12)
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FIG. 2: Centroid motions as (θ̂pc,x , θ̂pc,y) for ε > 0 (convex-type attractive models). The solid

and dashed curves correspond to β̂0 = 3 and β̂0 = 0.3, respectively. The horizontal axis along the

source linear motion is θ̂pc,x and the vertical axis is θ̂pc,y . Top left: n = 0.5 Top right: n = 1.

Bottom left: n = 3. Bottom right: n = 10.
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FIG. 3: Centroid shifts δθ̂pc for ε > 0 (convex-type attractive models). The solid and dashed

curves correspond to β̂0 = 3 and β̂0 = 0.3, respectively. The horizontal axis along the source

velocity is δθ̂pc,x and the vertical axis is δθ̂pc,y . Top left: n = 0.5 Top right: n = 1. Bottom left:

n = 3. Bottom right: n = 10.
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FIG. 6: Centroid motions as (θ̂pc,x , θ̂pc,y) for ε < 0 (repulsive models). The solid and dashed curves

correspond to β̂0 = 3 and β̂0 = 0.3, respectively. The horizontal axis along the source linear motion

is θ̂pc,x and the vertical axis is θ̂pc,y . The dashed curves do not exist for small β̂, where no images

appear. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 3. Bottom right: n = 10.
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FIG. 7: Centroid shifts δθ̂pc for ε < 0 (concave-type repulsive models). The solid and dashed curves

correspond to β̂0 = 3 and β̂0 = 0.3, respectively. The horizontal axis along the source velocity is

δθ̂pc,x and the vertical axis is δθ̂pc,y . The dashed curves are not closed, because no images appear

for small β̂. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 3. Bottom right: n = 10.
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OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH
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ABSTRACT

The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints
on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two
exotic objects for ∼50,000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic
abundances of these lenses. The number density of negative-mass compact objects is n < 10−8(10−4) h3 Mpc−3 at
the mass scale |M| > 1015(1012) M$, which corresponds to the cosmological density parameter |Ω| < 10−4 at the
galaxy and cluster mass range |M| = 1012–15 M$. The number density of the Ellis wormhole is n < 10−4 h3 Mpc−3

for a range of the throat radius a = 10–104 pc, which is much smaller than the Einstein ring radius.

Key words: cosmology: observations – gravitational lensing: strong

Online-only material: color figures

1. INTRODUCTION

In theoretical physics, negative mass is a hypothetical concept
of matter whose mass is of opposite sign to the mass of
normal matter. Negative mass could thus generate the repulsive
gravitational force. Although possible negative-mass ideas have
been often discussed since the 19th century, there has been no
evidence for them (Bondi 1957; Jammer 1961, 1999). Even if its
gravitational mass is negative, its inertial mass can be positive or
negative (e.g., Jammer 1961). If the inertial mass is positive, the
negative mass repels the ordinary matter (positive-mass objects)
and hence it is likely to escape from the Milky Way. The negative
masses attract each other to form a negative massive clump. Such
clumps might reside in cosmological voids (e.g., Piran 1997).
If the inertial mass is negative, on the other hand, the negative
mass acts gravitationally as the ordinary matter. In this case, the
negative masses could thus reside in the Galactic halo.

The gravitational lensing by the negative mass is the same
as that by the positive mass, but its deflection angle has the
opposite sign. Several authors have suggested that the negative
masses could be detected in the Galactic microlensing (Cramer
et al. 1995; Safonova et al. 2001a). Torres et al. (1998) assumed
that the lensing of the distant active galactic nuclei by the
hypothetical negative mass could be detected as the gamma-
ray burst and they provided the constraint on its mass density as
|ρ| ! 10−36 g cm−3 (corresponding to the cosmological density
parameter |Ω| ! 10−7) around the mass scale of |M| ∼ 0.1 M$.

The wormhole is a hypothetical object connecting distant
regions of the universe, like a spacetime tunnel. Ellis found a
wormhole solution of the Einstein equation in general relativity
by introducing a massless scalar field (Ellis 1973). Later, Morris
& Thorne (1988) and Morris et al. (1988) studied this solution
as the traversable wormhole. The energy condition would be
violated in order to create and maintain the wormhole (Visser
1995). Dark energy that could violate the energy condition is
introduced to explain the observed accelerated expansion of
the universe. The Ellis wormhole is massless and does not
gravitationally interact with ordinary matter at remote distance.
Hence, it makes no contribution to the cosmic mass density,
even if it lives in our universe. However, it can deflect the light
path. Recently, Abe (2010) suggested that the wormhole at the

throat radius of 100–107 km could be constrained (or detected)
by using the Galactic microlensing. Although its abundance is
quite unknown, some authors speculated that it is as abundant as
stars in the universe (Krasnikov 2000; Abe 2010). More recently,
Yoo et al. (2013) gave the rough upper bound of its number
density as n ! 10−9 AU−3 for the throat radius a ∼ 1 cm from
the femtolensing of distant gamma-ray bursts (Barnacka et al.
2012).

Although there are a lot of theoretical works concerning
negative-mass objects and Ellis wormholes (e.g., Morris &
Thorne 1988; Cramer et al. 1995; Visser 1995), observational
studies have been very rare, mainly because no matter accretion
occurs owing to the repulsive force by the negative mass and
the Ellis wormhole, and it is thus unlikely to directly see them
as luminous objects. Hence, it has recently attracted interests to
study the gravitational lensing as an observational tool to probe
such exotic dark objects (Kitamura et al. 2013; Tsukamoto &
Harada 2013).

When a light ray from a distant quasar passes near the above
lens objects (the negative mass and the Ellis wormhole), multiple
images of the quasar are formed without any normal lens object.
The absence of such multiple images can limit the cosmological
abundances of these lens objects. The purpose of this Letter
is to place a first upper bound on the cosmic abundances of
such exotic objects using the latest gravitational lensing survey.
The Sloan Digital Sky Survey Quasar Lens Search (SQLS) has
the current largest quasar lens sample from the SDSS II Data
Release 7 (York et al. 2000). There are 50,836 quasars in the
redshift range of z = 0.6–2.2 with the apparent magnitude
brighter than i = 19.1. The SQLS searched the lens systems in
the image angular separation of 1′′–20′′ and found 19 lensed
quasars (Oguri et al. 2006, 2008, 2012; Inada et al. 2012).
Note that this is currently the largest homogeneous sample
for all the wavelengths of light. However, there is no lensed
image candidate formed by unseen lens objects1 such as the
cosmic string, the black hole, and the dark halo (M. Oguri

1 This Letter assumes that the negative masses are unseen. However, they
might form stars (or galaxies) to emit radiation like the usual matter. In this
case, it would be difficult to distinguish the negative-mass object from the
positive one if these spectral energy distributions are the same. However, the
spectra of such negative-mass stars are quite unknown.
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Figure 1. Multiple lensing probability that a quasar at the redshift zs is lensed by
a foreground lens object. Left: negative-mass objects. Right: Ellis wormholes.
The horizontal axis is the absolute value of mass |M| (left panel) and the throat
radius a (right panel). The source redshift is set to be zs = 1.56 that is the mean
redshift of statistical sample. We consider three cases for the apparent magnitude
of the observed quasar as mi = 17 (orange), 18 (blue), and 19 (green). The black
curve is the result without the magnification bias. Note that the probability is
for the fixed number density of the lens n = 1 h3 Mpc−3 and the result scales
as P ∝ n.
(A color version of this figure is available in the online journal.)

magnitudes are mi = 17 (orange), 18 (blue) and 19 (green),
and the black curve is the result without the magnification bias.
The result is plotted for the fixed number density of the lens
n = 1 h3 Mpc−3 and the probability scales as P ∝ n.

In order to evaluate the observational upper bound on the
number density n of the lenses, we use the likelihood function
introduced in Kochanek (1993), ln L # −

∑NQ

j=1 P (zs,j , mi,j ),
where zs,j and mi,j are the redshift and the apparent magnitude
of the jth quasar. NQ is the total number of statistical samples
of quasars, NQ = 50836. The data of zs,j and mi,j were
downloaded from the SQLS Web site.2

4. RESULTS

Figure 2 shows the upper bound on the cosmological number
density of the negative-mass compact objects. The vertical axis
is the number density n (h3 Mpc−3), while the horizontal axis is
the absolute value of the mass |M|(h−1 M$). The two curves are
the upper bounds at 68% and 95% confidence levels. It turns out
that the number density is less than n < 10−7(10−5) h3 Mpc−3

for |M| > 1014(1012) M$. The blue dashed lines show the
absolute value of the cosmological density parameter, |Ω| =
10−4, 10−2, and 1. The density parameter is defined as the
mass density divided by the cosmological critical density,
Ω = Mn/ρcr. As shown in the figure, the density parameter
is less than |Ω| < 10−4 for galactic and cluster mass scale
|M| = 1012–1015 M$. As a result, the negative-mass compact
object is less abundant than the galaxy with typical luminosity
L∗ (ngal ≈ 10−2 Mpc−3) and the galaxy cluster with typical mass
1014 M$ (nclust ≈ 10−4 Mpc−3), which correspond to Ωgal ≈ 0.2
for the galaxies and Ωclust ≈ 0.3 for the clusters (e.g., Fukugita
& Peebles 2004).

2 http://www-utap.phys.s.u-tokyo.ac.jp/∼sdss/sqls/
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Figure 2. Upper bound on the cosmological number density of negative-mass
compact objects. The vertical axis denotes the density n (h3 Mpc−3). The
horizontal axis denotes the absolute value of the mass |M| (h−1 M$). The two
solid curves correspond to upper bounds of 68% and 95% confidence levels.
The blue dashed lines denote the absolute value of the cosmological density
parameter for the negative mass, |Ω| = 10−4, 10−2, and 1.
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Figure 3. Same as Figure 2, but for the Ellis wormhole. The horizontal axis is
the throat radius a (h−1 pc).

Figure 3 shows the Ellis wormhole cases. The horizontal
axis is the throat radius a (h−1 pc). As shown in the figure,
the number density is n < 10−4 h3 Mpc−3 for a = 10–104 pc.
As a result, the Ellis wormhole with a = 0.1–105 pc is much
less abundant than a star (nstar ≈ 1010 Mpc−3). Note that our
extragalactic constraint is complementary to the galactic one
by the microlensing that is sensitive for the smaller radius
a = 100–107 km (Abe 2010). The upper-bound curves in
Figure 3 approach straight lines for very small a((0.1 pc) or
large a()104 pc). In the case of a very small a, the lens is very
close to us since a ∝ DL from Equation (4) under the fixed θE
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Figure 3 shows the Ellis wormhole cases. The horizontal
axis is the throat radius a (h−1 pc). As shown in the figure,
the number density is n < 10−4 h3 Mpc−3 for a = 10–104 pc.
As a result, the Ellis wormhole with a = 0.1–105 pc is much
less abundant than a star (nstar ≈ 1010 Mpc−3). Note that our
extragalactic constraint is complementary to the galactic one
by the microlensing that is sensitive for the smaller radius
a = 100–107 km (Abe 2010). The upper-bound curves in
Figure 3 approach straight lines for very small a((0.1 pc) or
large a()104 pc). In the case of a very small a, the lens is very
close to us since a ∝ DL from Equation (4) under the fixed θE
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CCoonncclluussiioonn

Womholes and other exotic objects may be a probe of 
new physics, such as an exotic equation of state of 

matter/energy. 

Brightness anomaly and so on in gravitational lens 
observations may provide a clue for exotic objects. 

We discussed the inverse-power form of the spacetime 
metric as a phenomenological exotic lens model. 
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“Measuring the mass distribution of voids 
  with stacked weak lensing”

Y. Higuchi, M. Oguri and T. Hamana, MNRAS (2013)
10 Y.Higuchi, M.Oguri and T.Hamana
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Figure 7. Mass-radius relation. x-axis is radius obtained from void
finder. y-axis is mass estimated from our model with tangential shear
profiles. Crosses show masses obtained from weak lensing signals
and the dashed line plots best-fit curve with eq.34.

where A0 is constant and we treat it as a free parameter. Fig.7
shows the relationship obtained from the simulation results
along with the best-fit model which is determined by the
least-square method with A0 being

A0 = 1.32 × 1011. (35)

Using eq.34, we transform the radius interval to the mass in-
terval, and finally get the void mass function presented in Fig
8.

The best fit modified PS void function is obtained by fit-
ting the simulation result with the analytical function, eq.22
where δv is treated as a free parameter. We found the best
fit model with δv = −0.35. The mass function from the sim-
ulation and the best-fit curve of the modified PS model are
shown in figure.8. For checking the consistency, we also con-
duct same procedure using the results from the convergence
profile, finding the best-fit linear density of δv = −0.5. We
note that the parameter δv estimated from our model differs
from the value predicted from the spherical collapse model
δv = −2.81 (Sheth & van de Weygaert 2004). There are sev-
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Figure 8. Mass function of voids in simulation and the modified
PS theory. Points with errors show the mass function of voids de-
rived from the simulation. Masses are estimated from tangential
shear profiles. The number count of voids in the redshift range
0.4 ! z ! 0.6 are used. Error bar shows 1σ of the number count
with 200 realizations. The dashed line shows the best-fit curve in
the modified PS theory with the linear density fluctuation of δv =
−0.35. For comparison, we also show the mass function estimated in
Lavaux & Wandelt (2012).

eral possible reasons for this, including asphericity of voids
and different definition of voids in our study from the spher-
ical collapse model. To explore the origin of the discrepancy
is beyond the scope of this paper, and we leave it as future
work.

In addition, we also compare the mass function from
our simulation with one by Lavaux & Wandelt (2012) in
figure.8. Our mass function is higher than that estimated in
Lavaux & Wandelt (2012). The reason of this discrepancy is
unclear. A possible reason is the difference of void finding
algorithms adopted in two studies as statistical properties
of voids depend strongly on the definition of the void. The
other possibility is the error of mass estimation. The different
method to estimate the void mass may account for discrep-
ancy. We leave further investigation on this discrepancy for
future work.

7 CONCLUSION

In this paper, we have examined a feasibility of detecting
voids with stacked weak lensing. We select voids with a
void finder from halo catalogue made from a large set of N-
body simulations. We have stacked convergence and tangen-
tial shear data from the full ray-tracing simulations to obtain
their averaged radial profile (black in fig.4 and fig.5). From
our stacking analysis, we have seen both structures of void
and ridge outside the void.

To fit the stacked lensing profiles obtained from the sim-
ulation, we have considered a simple void model called dou-
ble top-hat model. Our model fits both profiles of conver-
gence and tangential shear in the simulation very well (fig.4
and fig.5). Estimated total void masses from this model were
M = 1014 ∼ 1016M$, which were a few times larger than
masses derived from direct integration of the convergence
profile at κ(θ) < 0. We have confirmed that the dense ridges
outside voids affect profiles of weak lensing signals and the

c© 0000 RAS, MNRAS 000, 000–000

Numerical simulations for 
near-future surveys

AApppplliiccaattiioonn  ttoo  ccoossmmoollooggyy

CCoossmmiicc  vvooiiddss::  eeffffeeccttiivvee  κ<<  00

“First measurement of gravitational lensing by cosmic voids 
in SDSS”, Melchior et al.,  ArXiv:1309.2045
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Concluding remarks
EExxoottiicc  lleennss  mmooddeellss  ssuuggggeesstt  
uunnuussuuaall  oobbsseerrvvaattiioonnaall  ffeeaattuurreess..  

TThheeyy  mmiigghhtt  bbee  uusseedd  
ffoorr  sseeaarrcchhiinngg  ((oorr  ccoonnssttrraaiinniinngg))
eexxoottiicc  mmaatttteerr//eenneerrggyy//ggrraavviittyy..

DDaarrkk  mmaatttteerr  aanndd  DDaarrkk  eenneerrggyy    
ppllaayy  aa  rroollee  iinn  ccoossmmoollooggyy..  

IIss  tthheerree  aannootthheerr  ((33rrdd))  ddaarrkk  ccoommppoonneenntt  
iinn  tthhee  uunniivveerrssee  ??  
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TABLE II: Einstein radii and model parameters for Bulge and LMC lensings. θE is the angular

Einstein radius, RE is the Einstein radius, and ε̄ and n are the two model parameters. DS = 8kpc

and DL = 4kpc are assumed for Bulge. DS = 50kpc and DL = 25kpc are assumed for LMC.

Bulge LMC

θE (mas) RE (km) ε̄
Rn

E
RE (km) ε̄

Rn
E

10−3 6.0 × 105 1.0 × 10−11 3.7 × 106 1.0 × 10−11

10−2 6.0 × 106 1.0 × 10−10 3.7 × 107 1.0 × 10−10

10−1 6.0 × 107 1.0 × 10−9 3.7 × 108 1.0 × 10−9

1 6.0 × 108 1.0 × 10−8 3.7 × 109 1.0 × 10−8

10 6.0 × 109 1.0 × 10−7 3.7 × 1010 1.0 × 10−7

102 6.0 × 1010 1.0 × 10−6 3.7 × 1011 1.0 × 10−6

103 6.0 × 1011 1.0 × 10−5 3.7 × 1012 1.0 × 10−5

TABLE III: Einstein radius crossing times for Bulge and LMC lensings. tE is the Einstein radius

crossing time. DS = 8kpc and DL = 4kpc are assumed for Bulge. DS = 50kpc and DL = 25kpc

are assumed for LMC. vT = 220km/s is assumed for Bulge and LMC. In this table, the Einstein

radius is calculated by RE = vT × tE from the definition of the Einstein radius crossing time. Here,

the input is tE ∼ 10−3 − 103(day), namely 1(min.) − 3(yr.).

tE (day) RE (km) ε̄
Rn

E
[Bulge] ε̄

Rn
E

[LMC]

10−3 1.9 × 104 3.1 × 10−13 5.0 × 10−14

10−2 1.9 × 105 3.1 × 10−12 5.0 × 10−13

10−1 1.9 × 106 3.1 × 10−11 5.0 × 10−12

1 1.9 × 107 3.1 × 10−10 5.0 × 10−11

10 1.9 × 108 3.1 × 10−9 5.0 × 10−10

102 1.9 × 109 3.1 × 10−8 5.0 × 10−9

103 1.9 × 1010 3.1 × 10−7 5.0 × 10−8
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But, exotic objects (e.g. wormholes) 
may violate Null Energy Condition. 

Null Energy Condition

Ricci focusing may be negative, 
while Weyl focusing is positive.

Raychaudhuri’s equation for null geodesics

Tµ�UµU� � 0

[N.B., Wormholes without exotic matter in Einstein-
Gauss-Bonnet-Dilaton gravity,  Kanti+, PRL (2011)]
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