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The expansion of the Universe 
The Hubble rate !
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Us and our 
experiments 



M
m
a

... ... m
atter

badoo.BG
#ggige.s@

sgsEe

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 2

An early-universe
estimate

A late-universe 
measurement:

4.4# tension

The Hubble tension

The expansion of the Universe today
The Hubble constant !!



Cosmic microwave background
The oldest light in the Universe

Source: WMAP
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Density imprint 
produced by sound 
waves in the early 
universe 



Cosmic microwave background
The oldest light in the Universe
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Density imprint 
produced by sound 
waves in the early 
universe 

Maximum 
variation at 
!∗ ∼ 1∘ scales 

Farthest distance 
that sound waves 
travelled ∼ $#
The sound horizon

Source: WMAP



The standard model of cosmology 
ΛCDM 
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Cosmic microwave background
and the ΛCDM model 
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Source: WMAPPlanck [1807.06209]

Planck fits ΛCDM to constrain 
(& = 67.4 ± 0.5 km/s/Mpc
by observing the Universe 

at early times



The distance ladder 

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 7Hubble Space Telescope 

Re
ce

ss
io

n 
ve

lo
ci

ty
 

Distance

SH0ES directly, 
model-independently 

measures 
!! = 74.03 ± 1.42

km/s/Mpc
at . = 0
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Fit ΛCDM to the 
early universe 
!! = 67.4 ± 0.5

km/s/Mpc

Directly measure in 
current universe 
!! = 74.03 ± 1.42

km/s/Mpc

4.42 tension

(and Planck)

Cosmic microwave 
background 

The Hubble tension

Early universe + 
cosmological 
assumptions 

Late universe + 
astrophysical  
assumptions 
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CMB estimation < Direct measurement 
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The Hubble tension
Current state – headache 

Di Valentino [2011.00246] 

Discrepancy between the early and 
late universe? 
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Is ΛCDM wrong? 



This talk
• Approaches to theoretically resolving the Hubble tension

• Solutions to (&: early dark energy (EDE) models

• Challenges: the large-scale structure tension 
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When to add new physics?
Early universe
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!∗ =
#"
$#

%
$∗

&∗

1' ∝ 1/(()#*
!∗ ∼

$#
1/(()#*

∼ $#(&

For constant *∗ , 
+4 ∝ 1/$5

Precisely measured 
6∗ is an approximate 
proxy for CMB peak 
locations

In support of an early 
universe modification:
Planck [1807.06209]
Bernal et al [1607.05617]
Evslin et al [1711.01051]
Aylor et al [1811.00537]

Cartoon by Tristan L. Smith 



Hubble tension ⟷ Sound horizon tension 
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Aylor et al [1811.00537]

Distance ladder 
+ BAO → 8#

CMB  8# + BAO 
→ !!

No CMB data 

Higher !! measured 

Lower !! inferred 

Lower !! inferred 



Approaches to a solution
Requirements: 

• Keep !∗ fixed (or keep CMB peaks fixed) such that $+ ∝ 1/(&

• Decrease $# ∝ 1/((,-(&), so increase the pre-CMB expansion rate 
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How to add new physics? 
Leave late universe unchanged

SH0ES
Other independent !! measurements 

Galaxy power spectra
Supernovae 

CMB gravitational lensing
Reionisation

CMB spectra 
Light element abundances 
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Approaches to a solution
Requirements: 

• Keep !∗ fixed (or keep CMB peaks fixed) such that $+ ∝ 1/(&

• Decrease $# ∝ 1/((,-(&), so increase the pre-CMB expansion rate 

• Leave 1' ∝ 1/(()#*(&) unchanged, so modification must disappear at late times

Early Dark Energy 
(EDE)
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This talk
ü Approaches to theoretically resolving the Hubble tension

• Solutions to (&: early dark energy (EDE) models

• Challenges: the large-scale structure tension 
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Hubble solutions
Reduce #!
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WMAP, NASA

Farthest distance that 
sound waves travelled 

∼ $# ∼ !∗

Sound waves travel a 
shorter distance if CMB is 
emitted earlier 

Electrons and protons 
have to combine 

sooner 

The Universe 
has to cool through 

expansion faster 

The Universe must expand faster than ΛCDM at very early times, before the CMB was emitted



Hubble solutions 
Effect of early dark energy
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Observed CMB
Add 

early dark energy 

Decrease 
8#

Increase 
!!

Disagreement with 
observed CMB



Approaches to a solution
Requirements: 

ü Keep !∗ fixed (or keep CMB peaks fixed) such that $+ ∝ 1/(&

ü Decrease $# ∝ 1/((,-(&), so increase the pre-CMB expansion rate 

• Leave 1' ∝ 1/(()#*(&) unchanged, so modification must disappear at late times

Early Dark Energy 
(EDE)
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Early dark energy (EDE)

Additional energy component with the 
properties:

• Λ-like behaviour initially 

• Then dilutes faster than matter as 5.

• Localised peak in 6-/- =
0!"!
0#$#%&

at &1

9$%$

:&
;'
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<()( - how much EDE
.* - when EDE appears
=+ (or >) - how fast is 
disappears 
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Approaches to a solution
Requirements: 

ü Keep !∗ fixed (or keep CMB peaks fixed) such that $+ ∝ 1/(&

ü Decrease $# ∝ 1/((,-(&), so increase the pre-CMB expansion rate 

ü Leave 1' ∝ 1/(()#*(&) unchanged, so modification must disappear at late times

Early Dark Energy 
(EDE)
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Early dark energy
Models
• Dark energy at early times, the Hubble parameter, and 

the string axiverse
TK & Kamionkowski [1608.01309]

• Cosmological implications of ultralight axionlike fields
Poulin, TK et al [1806.10608]

• Early Dark Energy Can Resolve The Hubble Tension
Poulin, TK et al [1811.04083]

• Thermal Friction as a Solution to the Hubble Tension
Berghaus & TK [1911.06281]

• Dark energy from the string axiverse. Kamionkowski, Pradler & Walker 

[1409.0549]

• Rock 'n' Roll Solutions to the Hubble Tension. Agrawal et al 

[1904.01016]

• Axion-Dilaton Destabilization and the Hubble Tension. Alexander & 

McDonough [1904.08912]

• Acoustic Dark Energy: Potential Conversion of the Hubble Tension. Lin et 

al [1905.12618]

• Oscillating scalar fields and the Hubble tension: a resolution with novel 

signatures. Smith, Poulin, Amin [1908.06995]

• New Early Dark Energy. Neidermann & Sloth [1910.10739]

• Early Dark Energy from Massive Neutrinos as a Natural Resolution of the 

Hubble Tension. Sakstein & Trodden [1911.11760]

• Unifying Inflation with Early and Late-time Dark Energy in F(R) Gravity. 

Nojiri et al [1912.13128]

• Is the Hubble tension a hint of AdS phase around recombination? Ye & 

Piao [2001.02451]

• Unified framework for early dark energy from α-attractors. Braglia et al 

[2005.14053]

• A novel early Dark Energy model. Garcia, Castaneda, Tejeiro

[2009.07357]

• Neutrino-Assisted Early Dark Energy: Theory and Cosmology. Gonzalez 

et al [2011.09895]

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 



Early dark energy
Models
Dissipative axion (DA)

Uncoupled scalar experiences Hubble 
friction. Uncoupled DR dilutes as 1 + & %

9̈ + 3( 9̇ + <2 = 0

=̇/, = −4(=/,
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Berghaus & Karwal [1911.06281]

! "



Early dark energy
Models
Dissipative axion (DA)

Scalar coupled to DR additionally
experiences thermal friction 

9̈ + 3( + Υ @/, 9̇ + <2 = 0

=̇/, = −4(=/, + Υ @/, 9̇3
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Berghaus & Karwal [1911.06281]
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Early dark energy
Models
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Berghaus & Karwal [1911.06281]

Dissipative axion (DA)

9̈ + 3( + Υ @/, 9̇ + <2 = 0

=̇/, = −4(=/, + Υ @/, 9̇3

A,94 → 6-/-
A,Υ T56 → &1
5. = 1/3

Robust to choice of <(9)

'!"!

(#

)$ = +/-
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Poulin, TK, et al [arxiv:1806.10608]

Ultra-light axion-like (ULA) 
particles 

< 9 ∝ 1 − cos 9
7

5. =
H − 1

H + 1

94 , 6 ,A ↔ 6-/- , &1



Early dark energy  
Models
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Poulin, TK, et al [arxiv:1806.10608]

Ultra-light axion inspired (ULA) potential 

? @ ∝ 1 − cos @
,

.(
/)

@

<()( - how much EDE
.* - when EDE appears
=+ (or >) - how fast is 
disappears 

Effectively >
→ ∞

Berghaus & Karwal [1911.06281]

< 9 ~93

Dissipative Axion



Early dark energy 
Solutions 

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 28

Based on 
• CMB temperature, polarisation and lensing 

data from Planck 2015
• Local Hubble measurement from SH0ES 2018
• Baryon acoustic oscillations
• Pantheon supernovae 

F*)- = fractional amount of cold dark 
matter today

<()( G* = fractional energy density in the 
axion field at critical redshift .* ≈ 1/G*
As before, =+ =

,./
,0/
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SH0ES

Dilutes like radiation 

Dilutes as %!".$
Dilutes as %!%

Phenomenological EDE (ULA fluid) 

' = 3
)& = 70.6 (71.6) ± 1.3



Early dark energy
Detection

Poulin, TK et al [1811.04083]

Could detect EDE in 
cosmic-variance-limited, 
high-ell
CMB polarisation data
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Early dark energy 
New concordance model? 
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Is this the new concordance model? 



This talk
ü Approaches to theoretically resolving the Hubble tension

ü Solutions to (&: early dark energy (EDE) models

• Challenges: the large-scale structure tension 
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Fit ΛCDM to the 
early universe 

!! = 66.93 ± 0.62
km/s/Mpc

Directly measure in 
current universe 
!! = 74.03 ± 1.42

km/s/Mpc

4.42 tension
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(and Planck)Cosmic microwave 
background 

The Hubble tension

Fit ΛCDM to the 
early universe 

K1 = 0.832 ± 0.013

Directly observe the
current universe 
K1 = 0.766.!.!/3

0!.!4!

< 32 tension

Large-scale structure tension 



Challenges for EDE
Large-scale structure tension and implications  
• Gap in our understanding of how matter clusters?

• Insight into dark matter?

• Relate to the small-scale structure problems of ΛCDM? 
• ΛCDM has difficulty with galaxy evolution 
• Density distribution of some galaxies – see a core but expect a cusp
• Missing satellites – we expect more sub-halos than observed

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 33



Challenges for EDE
LSS tension 

The S8 tension
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Heymans et al [2007.15632]

EDE

Large-scale structure 
(LSS) directly observed 
in the late universe 
K1 = 21 Ω-/0.3

CMB-inferred value 
using ΛCDM

K1<

DES Y1 [1708.01530]
KiDS+VIKING-450 [1812.06076]
KiDS-1000 [2007.15632] 

Consistent
2.32
32



Challenges for EDE
LSS tension in EDE and ΛCDM

Smith et al. [2009.10740]

Effect of LSS tension on EDE is stronger constraints

EDE with CMB 
EDE with CMB+LSS 
ΛCDM with CMB+LSS

What is the origin of the discrepancy between LSS 
and CMB? 

- Amplitude "2 of the primordial power spectrum 

Exercise: allow LSS and CMB different "2
ΛCDM with CMB+LSS+"2 split
EDE with CMB+LSS+"2 split

Tight EDE constraints disappear 

.(0) with split 
between 2%&'( and 
2%)**

TANVI KARWAL, UNIVERSITY OF PENNSYLVANIA 



Towards a new concordance model 

Figure: 
a confused dogModel to replace ΛCDM ?
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Model Tensions
ΛCDM Both !! and LSS

ΛCDM+EDE Only LSS
New concordance model Neither



To EDE and beyond
• Does the Hubble tension indicate new physics? Could a solution lie in the early universe? 

• Early dark energy can resolve the Hubble tension
• Several fundamental models for EDE, with varying success at solving the Hubble tension 
• The goodness of fit to cosmological data is not compromised by this addition 
• CMB data from ACT, SPT and CMB-S4 can test EDE
• EDE faces challenges with the LSS tension [2003.07355] but this tension arises from within ΛCDM 

and is not introduced because of EDE [2009.10740]
• Different avatars of EDE have different effects on the large-scale structure tension? 

• New EDE claims to find no tension with EFT of LSS [2009.00006]
• EDE coupled to neutrinos might have implications for LSS [1911.11760]

• EDE can be a stepping-stone as we search for the new concordance model of the Universe 
• Two independent solutions required for "3 and LSS? 

• 8! depends on background expansion 
• LSS depends on perturbation evolution 

• EDE models can be applied to other eras of cosmic expansion – to explain dark energy or inflation 

New LSS, CMB data and further theoretical work might bring insight into the dark sector! 
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Randall Munroe, xkcd
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ΛCDM Parameters
• (& = 100ℎ km s9:Mpc9: - current 

value of the Hubble parameter  

• Q; = Ω;ℎ3 - the fractional density of 
baryons in the Universe 

• Q1 = Ω1ℎ3 - the fractional density of 
cold dark matter in the Universe

• S - the optical depth due to reionization 

• ln(10:&V#) – amplitude of the 
primordial power spectrum

• H# - scalar spectrum power-law index Source: Ade et al, A&A 2016
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