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ASPECTS OF 2 ➔ 2 SCATTERING 
AMPLITUDES IN THE HIGH-ENERGY LIMIT



2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

• Calculation of scattering amplitudes at high order in perturbation theory is one of the main 
ingredients for the program of precision physics at the LHC

• Amplitudes are complicated functions of the kinematical invariants, their calculation is non-
trivial, and it is subject of intense study.

• Express Feynman integrals in terms of known functions (harmonic polylogarithms, elliptic 
integrals, etc)

• Amplitudes contains infrared divergences, which must cancel when summing virtual and 
real corrections.
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

• Consider 2 → 2 scattering amplitudes in the high-energy limit:

• The amplitude becomes a function of the ratio |s/t|; here we consider the leading power term 
in this expansion

s = (p1 + p2)
2 � �t = �(p1 � p4)

2 > 0

p1

p2 p3

p4

t channel
s channel

• Information and constraints can be obtained by 
considering kinematical limits:

• the number of invariants is reduced;

• identify factorisation properties and iterative 
structures of the amplitude;

• relevant for phenomenology: because of soft and 
collinear enhancement, differential distributions in 
specific kinematic limit develops large logarithms, 
which may spoil the convergence of the 
perturbative expansion.
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT
• Gluon-gluon scattering amplitude at tree level:

• In the high-energy limit only the second diagram contributes at leading power. 

• The amplitude at higher orders contains logarithms of the ratio |s/t|. They can be characterised in 
terms of Regge poles and cuts: at LL

• The function 𝛼g(t) is known as the Regge trajectory 
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• The amplitudes which develop definite factorisation properties in the high-energy limit are the 
so called even and odd amplitudes, i.e. the projection onto eigenstates of signature, (crossing 
symmetry s ↔ u)

• M(+) and M(−) are respectively imaginary and real, when expressed in terms of the natural 
signature-even combination of logs
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

ŝ

• Determining the amplitude beyond LL requires to understand 
the structure of Regge cuts.



• Beyond tree level the amplitude has a non-trivial color structure

• Decompose the amplitude in a color orthonormal basis in the t-channel

• Invoking Bose symmetry we deduce

M(s, t) =
X

i

c[i] M[i](s, t).

odd: M[8a],M[10+10], even: M[1],M[8s],M[27],M[0]
(gg scattering) .

8⌦ 8 = 1� 8s � 8a � 10� 10� 27� 0
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FACTORISATION STRUCTURE
• Write the amplitude as the sum of odd and even component

• The amplitude in the high-energy limit has the following factorisation structure 

• Focus on the Regge-cut contributions: define a “reduced” amplitude by removing the Reggeized 
gluon and collinear divergences
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THE BALITSKY-JIMWLK EQUATION AND 
THE THREE REGGEON CUT
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• Starting at NNLL, one has mixing between one- and three-Reggeons exchange:

• The mixing between one- and three-Reggeons exchange has significant consequences:

• It is at the origin of the breaking of the simple power law one has up to NLL accuracy. 
Such breaking appears for the first time at two loops.

• Starting at three loops, there will be a single-logarithmic contribution originating from the 
three-Reggeon exchange, and from the interference of the one- and three-Reggeon 
exchange: the interpretation of the Regge trajectory at three loops needs to be clarified. 

• Schematically, the whole amplitude at NNLL is composed of 

THE ODD AMPLITUDE AT NNLL
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• The high-energy limit correspond to a configuration of forward scattering: 

• The high-energy logarithm is the rapidity difference between the target and the projectile: 

• This kinematical configuration is described in terms of Wilson lines stretching from −∞ to +∞.  
The Wilson lines follow the paths of color charges inside the projectile, are null and labelled by 
transverse coordinates z:

• The idea is to approximate, to leading power, the fast projectile and target by Wilson lines and 
then compute the scattering amplitude between Wilson lines. 
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• The Wilson line  stretches from −∞ to +∞ and  
thus develops rapidity divergencies.  The regularised  
Wilson lines obeys the Balitsky-JIMWLK evolution  
equation:  
 
 
 
with  
 
 
and TL/R’s are generators for left and right color rotations:  
 
 

• In our analysis we need only the leading-order conformal invariant kernel Kij  

 

 

• The number of Wilson lines is not fixed: a projectile necessarily contains multiple color charges 
at different transverse positions.

THE BALITSKY-JIMWLK EQUATION
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• However, in perturbation theory the unitary matrices U(z) will be close to identity and so can 
be usefully parametrised by a field W

• The color-adjoint field W sources a BFKL Reggeised gluon. A generic projectile, created with 
four-momentum p1 and absorbed with p4, can thus be expanded at weak coupling as 
 
 
 
and we introduce the impact factors Di,j, which encode the dependence on the transverse 
coordinates of the W fields.

• We need to derive the evolution equation for the field W. This is equivalent to switch from the 
Balitsky-JIMWLK to the BFLK regime.

BFKL THEORY ABRIDGED
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• Expand U in powers of W

• The expansion of the color generators follows by using the Backer-Campbell-Hausdorff 
formula.  Then, it is possible to expand the leading Hamiltonian Hij in powers of gs  
 
 
We get  

• The first non-linear correction is new 
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• The inner product is the scattering amplitude of Wilson lines renormalized to equal rapidity.

• Multi-Reggeon correlators are obtained by Wick contractions

• There are also off-diagonal elements, which can be defined to have zero overlap (at equal 
rapidity)

• Choosing the 1-W and 3-W states to be orthogonal, combined with symmetry of the 
Hamiltonian, (boost invariance)

• implies that in this scheme Hk → k+2 = Hk+2 → k. This relation is known as projectile-target duality.

BFKL THEORY ABRIDGED
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• An m→m+k transition from the leading-order Balitsky-JIMWLK equation is proportional to 
gs2l+k. Thus for k ≥ 0, all the interactions can be extracted from the leading-order equation. 

• Interactions with k < 0 are suppressed by at least gs2l+|k|, which means that they can first appear 
in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. 

• Thus to obtain the m→m−2 transition by direct calculation of the Hamiltonian would require 
three- loop non-planar computation. 

• For our purposes this is unnecessary, since the symmetry of H predicts the result.

THE BALITSKY-JIMWLK EQUATION
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• Ingredients which build up the amplitude: since the odd and even sectors are orthogonal and 
closed under the action of Ĥ (signature symmetry), we have 

• The signature odd amplitude becomes to three loops:

THE ODD AMPLITUDE UP TO THREE LOOPS
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+ h j,1|Ĥ3!1| i,3i
i(LO)o

+ h j,3| i,3i(NLO) + h j,1| i,1i(N
3LO).



Up to two loops the amplitude reads

with

At three loops we find the following amplitude:

where the loop functions RA,B,C are 

RESULT: THE ODD AMPLITUDE AT NNLL TO THREE LOOPS
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COMPARISON BETWEEN REGGE AND 
INFRARED FACTORIZATION



• The calculation of the amplitude was based solely on evolution equations of the Regge limit.

• Highly nontrivial consistency test: the prediction must be consistent with the known 
exponentiation pattern and the anomalous dimensions governing infrared divergences.

• Conversely, the prediction for the reduced amplitude gives a constraint on the soft anomalous 
dimension.

• The infrared divergences of amplitudes are controlled by a renormalization group equation:  
 
 
 
where Z is given as a path-ordered exponential of the soft-anomalous dimension: 

• The soft anomalous dimension for scattering of massless partons (pi
2 = 0) is an operators in 

color space given, to three loops, by
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• 𝜞dip
n involves only pairwise interactions amongst the hard partons: “dipole formula”

• The term 𝜟n(𝜌ijkl) involves interactions of up to four partons: “quadrupole correction”

• The three loop correction has been calculated recently, and reads 
 
 
 
 
 
 
 
 
where F is a function of cross ratios: 𝜌ijkl = (-sij)(-skl)/(-sik)(-sjl). Explicitly, one has  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• In the high-energy limit the dipole formula reduces to 

• The quadrupole correction has only one imaginary term at NNLL

• Because of the form of 𝜞dip and 𝜟(𝜌ijkl) in the High-energy limit, the Z factor factorises 

• The relevant bit for us is 

• The factors K and Q𝜟 involve integrals over the scale
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• The finite reminder of the amplitude, i.e. the hard function reads

• This equation allows us to pass from directly from the reduced amplitude predicted using BFKL 
theory, to the hard function. 

• In particular, the statement that the left-hand-side H is finite, which is equivalent to the 
exponentiation of infrared divergences, is a highly nontrivial constraint on our result. 

• By using Baker-Campbell-Hausdorff formula we get the hard function at each order in 
perturbation theory. For instance
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• Some coefficients, like the impact factors, are not predicted explicitly from Regge theory.

• The BFLK approach developed here allows us to extract these quantities consistently, and use 
them to predict higher orders.

• The impact factors at two loops are extracted by taking the projection of the amplitude onto 
the antisymmetric octet component: 

• The effect of the three-Reggeon cut is evident from the color-dependent term. Consistency 
requires the three equations above to be satisfied simultaneously.

BFKL VS INFRARED FACTORISATION
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• At three loops, at NNLL, the calculation of the odd sector within Regge theory gives 
 
 
 
 
 
 
 
 
which is consistent with infrared factorisation. This is a rather non-trivial check, given that the 
two calculations are done in two completely different ways. 
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• We get some parts of the finite amplitude.  In the orthonormal basis in the t-channel we have

• The antisymmetric octet amplitude cannot be predicted entirely, given the unknown Regge 
trajectory at three loops. The              component can be predicted exactly, and it agrees with 
a recent calculation of the gluon-gluon amplitude in N=4 SYM. 

• Starting from three loops the “gluon Regge trajectory” is scheme-dependent. We define it to 
be the 1→1 matrix element of the Hamiltonian, αg(t) = −H1→1/CA, in the scheme where states 
corresponding to a different number of Reggeon are orthogonal

BFKL VS INFRARED FACTORISATION
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• Thanks to a recent calculation of the gluon-gluon amplitude in N=4 SYM, in this theory one has 
 
 
 
Define the Regge trajectory as  
 
 
Then, matching these two results we get

• The amplitude is really a sum of multiple powers. Simply exponentiating the log of the full 
amplitude at three loops predicts an incorrect four-loop amplitude.  The correct, procedure is to 
exponentiate the BFKL Hamiltonian. With the “trajectory” fixed as above, this procedure does not 
require any new parameter for the odd amplitude at NNLL to all loop orders.

THE REGGE TRAJECTORY AT THREE LOOPS IN N=4 SYM
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THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT

• The even amplitude at NLL is given by 
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j,2 |e�ĤL| (+)

i,2 i(LO),
i

2s
M̂(+,`)

NLL =
1

(`� 1)!
h (+)

2 |
⇣
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• The even amplitude reads 
 
 
with

• The “target averaged wave function” reads 
 
 
with  
 
 
and the initial condition is fixed to 

• The function f is the BFKL kernel 

THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT
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• Up to four loops one gets

THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT
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• At four loop a new color structure appear, with a single pole 
not predicted by the dipole formula of infrared divergences! 

• The fact that it arises only at four loops is a consequence of 
the “top-bottom” symmetry of the ladder.  The new color 
structure appears in the target-averaged wave function already 
at three loops, but it cancels out due to this symmetry. 
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• It would be possible to calculate few order higher in perturbation theory; the problem 
becomes rapidly quite involved. 

• However, this is not necessary, if we are interested to know only the infrared singularities. 
Reconsider the wave function:  
 
 
with  
 
 
where

• The wave function is actually finite. All divergences must arise from the last integration!

• Divergences arises only from the limit k → p or k → 0 limit. Consider one of the two regions, 
and multiply the result by two. 

TWO REGGEON CUT: SOFT APPROXIMATION

⌦(`�1)(p, k) = (2CA �T2
t ) 

(`�1)(p, k) + (CA �T2
t )�

(`�1)(p, k),

 (`�1)(p, k) =

Z
[Dk0] f(p, k, k0)

h
⌦(`�2)(p, k0)� ⌦(`�2)(p, k)

i
, �(`�1)(p, k) =

1� J(p, k)

2✏
⌦(`�2)(p, k),

f(p, k0, k) =
k02

k2(k � k0)2
+

(p� k0)2

(p� k)2(k � k0)2
� p2

k2(p� k)2
,

J(p, k) =

✓
p2

k2

◆✏

+

✓
p2

(p� k)2

◆✏

� 1.

M̂(+,`)
NLL = �i⇡

(B0)`

(`� 1)!

Z
[Dk]

p2

k2(k � p)2
⌦(`�1)(p, k)T2

s�u M(0),

finite!



• In the soft limit the integrations becomes trivial (“bubble” integrals). We obtain an all-order 
solution for the target-averaged wave function  
 
 
 
where 

• It is immediate to get the reduced amplitude

• The result is valid up to the single poles, which allows one to achieve a tremendous simplification 
 
 
 
where
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• Expand for a few orders in the strong coupling constant:  
 
 
 
 
 
 
 
 
 
 
 
 
 
A new color structure appears every three loops!

• Resumming the amplitude to all loops we get 

TWO REGGEON CUT: SOFT APPROXIMATION
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COMPARISON BETWEEN REGGE AND 
INFRARED FACTORIZATION



• Consider the soft anomalous dimension

• with 

• Parameterise the soft anomalous dimension at NLL according to

• Within the dipole formula one has

• Recall now the infrared factorisation formula

• with

TWO REGGEON CUT: BFKL VS INFRARED FACTORISATION
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• We get the infrared-factorised representation of the reduced amplitude:

• and comparing with the result from the Regge theory allows us to obtain

• Explicitly, for the first few orders we have:

• The result can be used as constraint in a bootstrap approach to the soft anomalous dimension.
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CONCLUSION

• Using the non-linear Balitsky-JIMWLK rapidity evolution equation we have computed the 
three-Reggeon cut to three loops, at NNLL in the signature-odd sector, and the IR singular 
part of the two-Reggeon cut to all orders, at NLL in the signature-even sector, for 2 → 2 
scattering amplitudes.

• Concerning the three-Reggeon cut, we have shown how to take systematically into 
account the effect of mixing between states with k and k+2 Reggeized gluons, due non-
diagonal terms in the Balitsky-JIMWLK Hamiltonian, which contribute first at NNLL.

• Our results are consistent with a recent determination of the infrared structure of 
scattering amplitudes at three loops, as well as a computation of 2 → 2 gluon scattering in 
N = 4 super Yang-Mills theory. Combining the latter with our Regge-cut calculation we 
extract the three-loop Regge trajectory in this theory. 

• The calculation of the infrared singular part of the two-Reggeon cut allows us to extract 
the soft anomalous dimension to all orders in perturbation theory, in this kinematical limit.

• The information obtained concerning infrared singularities has been/will be used to 
constrain the structure of the soft anomalous dimension in general kinematics. (See 
Almelid, Duhr, Gardi, McLeod, White, 2017).


