High Energy Behaviour of Form Factors

Taushif Ahmed
Johannes Gutenberg University Mainz
Germany

Skype Seminar
IIT Hyderabad
May 10, 2018

With Johannes Henn \& Matthias Steinhauser

Ref: JHEP 1706 (2017) 125

GOAL \& MOTIVATION

- Infrared divergences: important quantities
- Consider: QCD corrections to photon-quark vertex

$$
V^{\mu}\left(q_{1}, q_{2}\right)=\bar{v}\left(q_{2}\right) \Gamma^{\mu}\left(q_{1}, q_{2}\right) u\left(q_{1}\right)
$$

- Vertex function: characterised by two scalar form factors F_{1}, F_{2}

$$
\Gamma^{\mu}\left(q_{1}, q_{2}\right)=Q_{q}\left[F_{1}\left(q^{2}\right) \gamma^{\mu}-\frac{i}{2 m} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} q_{\nu}\right]
$$

- Consider: Form factors of massive quarks
- Important quantities: F_{1} is building block for variety of observables
e.g. Xsection of hadron production in $e^{-} e^{+}$annihilation \& derived quantities like forwardbackward asymmetry
- Also consider: the massless scenario

GOAL \& MOTIVATION

- State-of-the-art results

$$
\begin{aligned}
& m \neq 0 \quad F_{1}, F_{2} \text { at 3-loop [Henn, Smirnov, Smirnov, Steinhauser '16] } \\
& \text { in large } N_{c} \text { limit in } S U\left(N_{c}\right) \\
& \text { [Henn, Smirnov, Smirnov, Steinhauser, Lee '16] }
\end{aligned}
$$

- Next steps: compute the full results for general N_{c} \rightsquigarrow underway by several groups
- We address: What can we say about next order?
\rightsquigarrow indeed, IR poles can be predicted (partially) by exploiting RG evolution of FF

RESULTS
$m \neq 0 \rightsquigarrow F_{1}$ at 4-loop in large N_{c} and high energy limit upto $1 / \epsilon^{2}$ $m=0 \rightsquigarrow F_{1}$ at 5 -loop in large N_{c} and high energy limit upto $1 / \epsilon^{3}$

- We also obtain process independent functions relating massive \& massless amplitudes in high-energy limit at $3 \& 4$-loops

Plan Of The Talk

- RG evolution: massive
- Cute technique to solve
- RG evolution: massless
- Process independent functions
- Conclusions

RG Equation: MAssive

- FF satisfies KG eqn in dimensional reg.

$$
-\frac{d}{d \ln \mu^{2}} \ln \tilde{F}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, \epsilon\right)=\frac{1}{2}\left[\tilde{K}\left(\hat{a}_{s}, \frac{m^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)+\tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)\right]
$$

QCD factorisation, gauge \& RG invariance

- The form factor

$$
\begin{aligned}
& F=C e^{\ln \tilde{F}} \\
& \text { Matching coefficient }
\end{aligned}
$$

$$
\begin{aligned}
& Q^{2}=-q^{2}=-\left(p_{1}+p_{2}\right)^{2} \\
& d=4-2 \epsilon \\
& \hat{a}_{s} \equiv \hat{\alpha}_{s} / 4 \pi
\end{aligned}
$$

μ : scale to keep \hat{a}_{s} dimensionless
μ_{R} : renormalisation scale

- Goal: Solve the RG
- Strategy: Use bare coupling \hat{a}_{s} instead of renormalised one a_{s}

$$
\frac{d}{d \ln \mu_{R}^{2}} \tilde{K}\left(\hat{a}_{s}, \frac{m^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)=-\frac{d}{d \ln \mu_{R}^{2}} \tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)=-A\left(a_{s}\left(\mu_{R}^{2}\right)\right)
$$

$$
\tilde{K}\left(\hat{a}_{s}, \frac{m^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)=K\left(a_{s}\left(m^{2}\right), \epsilon\right)-\int_{m^{2}}^{\mu_{R}^{2}} \frac{d \mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)
$$

$$
\tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)=G\left(a_{s}\left(Q^{2}\right), \epsilon\right)+\int_{Q^{2}}^{\mu_{R}^{2}} \frac{d \mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)
$$

Boundary terms

Solving RG Equation: Massive

Initial goal: Solve for $\ln \tilde{F}$ in powers of bare \hat{a}_{s}

Need all quantities in powers of \hat{a}_{s}

Expand

$$
\mathcal{B}\left(a_{s}\left(\lambda^{2}\right)\right) \equiv \sum_{k=1}^{\infty} a_{s}^{k}\left(\lambda^{2}\right) \mathcal{B}_{k}
$$

$$
\begin{gathered}
\mathcal{B} \in\{K, G, A\} \\
\lambda \in\left\{m, Q, \mu_{R}\right\}
\end{gathered}
$$

Renormalisation constant

$$
\begin{aligned}
& \hat{a}_{s}=a_{s}\left(\mu_{R}^{2}\right) Z_{a_{s}}\left(\mu_{R}^{2}\right)\left(\frac{\mu^{2}}{\mu_{R}^{2}}\right)^{-\epsilon} \\
& Z_{a_{s}}^{-1}\left(\lambda^{2}\right)=1+\sum_{k=1}^{\infty} \hat{a}_{s}^{k}\left(\frac{\lambda^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{Z}_{a_{s}}^{-1,(k)}
\end{aligned}
$$

Expansion of \mathcal{B} in powers of \hat{a}_{s}

Solving RG Equation: Massive

Soln of \mathcal{B} in powers of \hat{a}_{s}

$$
\mathcal{B}\left(a_{s}\left(\lambda^{2}\right)\right)=\sum_{k=1}^{\infty} \hat{a}_{s}^{k}\left(\frac{\lambda^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{\mathcal{B}}_{k}
$$

$$
\hat{\mathcal{B}}_{1}=\mathcal{B}_{1},
$$

with

$$
\hat{\mathcal{B}}_{2}=\mathcal{B}_{2}+\mathcal{B}_{1} \hat{Z}_{a_{s}}^{-1,(1)}
$$

$$
\begin{aligned}
& \hat{\mathcal{B}}_{3}=\mathcal{B}_{3}+2 \mathcal{B}_{2} \hat{Z}_{a_{s}}^{-1,(1)}+\mathcal{B}_{1} \hat{Z}_{a_{s}}^{-1,(2)} \\
& \hat{\mathcal{B}}_{4}=\mathcal{B}_{4}+3 \mathcal{B}_{3} \hat{Z}_{a_{s}}^{-1,(1)}+\mathcal{B}_{2}\left\{\left(\hat{Z}_{a_{s}}^{-1,(1)}\right)^{2}+2 \hat{Z}_{a_{s}}^{-1,(2)}\right\}+\mathcal{B}_{1} \hat{Z}_{a_{s}}^{-1,(3)}
\end{aligned}
$$

The integral becomes a polynomial integral \rightsquigarrow trivial

$$
\int_{\lambda^{2}}^{\mu_{R}^{2}} \frac{d \mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)=\sum_{k=1}^{\infty} \hat{a}_{s}^{k} \frac{1}{k \epsilon}\left[\left(\frac{\lambda^{2}}{\mu^{2}}\right)^{-k \epsilon}-\left(\frac{\mu_{R}^{2}}{\mu^{2}}\right)^{-k \epsilon}\right] \hat{A}_{k}
$$

Un-RENORMALISED SOLUTION: MASSIVE

Solution of KG in powers of bare \hat{a}_{s}

$$
\ln \tilde{F}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, \epsilon\right)=\sum_{k=1}^{\infty} \hat{a}_{s}^{k}\left[\left(\frac{Q^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{\tilde{\mathcal{L}}}_{k}^{Q}(\epsilon)+\left(\frac{m^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{\tilde{\mathcal{L}}}_{k}^{m}(\epsilon)\right]
$$

Renormalised Solution

$$
\begin{aligned}
& \hat{a}_{s}=a_{s}\left(\mu_{R}^{2}\right) Z_{a_{s}}\left(\mu_{R}^{2}\right)\left(\frac{\mu^{2}}{\mu_{R}^{2}}\right)^{-\epsilon} \\
&= \sum_{k=1}^{\infty}\left[a_{s}^{k}\left(Q^{2}\right) \tilde{\mathcal{L}}_{k}^{Q}+a_{s}^{k}\left(m^{2}\right) \tilde{\mathcal{L}}_{k}^{m}\right]
\end{aligned}
$$

To obtain the renormalised solution in powers of general $a_{s}\left(\mu_{R}^{2}\right)$ \leadsto use d-dimensional evolution of $a_{s}\left(\mu_{R}^{2}\right)$

$$
\frac{d}{d \ln \mu_{R}^{2}} a_{s}\left(\mu_{R}^{2}\right)=-\epsilon a_{s}\left(\mu_{R}^{2}\right)-\sum_{k=0}^{\infty} \beta_{k} a_{s}^{k+2}\left(\mu_{R}^{2}\right) \quad \text { Solved iteratively }
$$

RENORMALISED SOLUTION: MASSIVE

Renormalised Solution

$$
\ln \tilde{F}=\sum_{k=1}^{\infty} a_{s}^{k}\left(\mu_{R}^{2}\right) \tilde{\mathcal{L}}_{k}
$$

For $\mu_{R}^{2}=m^{2}$ at one loop

$$
\begin{aligned}
\tilde{\mathcal{L}}_{1} & =\frac{1}{\epsilon}\left\{-\frac{1}{2}\left(G_{1}+K_{1}-A_{1} L\right)\right\}+\frac{L}{2}\left(G_{1}-\frac{A_{1} L}{2}\right)-\epsilon\left\{\frac{L^{2}}{4}\left(G_{1}-\frac{A_{1} L}{3}\right)\right\} \\
& +\epsilon^{2}\left\{\frac{L^{3}}{12}\left(G_{1}-\frac{A_{1} L}{4}\right)\right\}-\epsilon^{3}\left\{\frac{L^{4}}{48}\left(G_{1}-\frac{A_{1} L}{5}\right)\right\}+\epsilon^{4}\left\{\frac{L^{5}}{240}\left(G_{1}-\frac{A_{1} L}{6}\right)\right\}+\mathcal{O}\left(\epsilon^{5}\right)
\end{aligned}
$$

At two loop

$$
\begin{aligned}
\tilde{\mathcal{L}}_{2} & =\frac{1}{\epsilon^{2}}\left\{\frac{\beta_{0}}{4}\left(G_{1}+K_{1}-A_{1} L\right)\right\}-\frac{1}{\epsilon}\left\{\frac{1}{4}\left(G_{2}+K_{2}-A_{2} L\right)\right\}+\frac{L}{2}\left(G_{2}-\frac{A_{2} L}{2}\right) \\
& -\frac{\beta_{0} L^{2}}{4}\left(G_{1}-\frac{A_{1} L}{3}\right)-\epsilon\left\{\frac{L^{2}}{2}\left(G_{2}-\frac{A_{2} L}{3}\right)-\frac{\beta_{0} L^{3}}{4}\left(G_{1}-\frac{A_{1} L}{4}\right)\right\} \\
& +\epsilon^{2}\left\{\frac{L^{3}}{3}\left(G_{2}-\frac{A_{2} L}{4}\right)-\frac{7 \beta_{0} L^{4}}{48}\left(G_{1}-\frac{A_{1} L}{5}\right)\right\}-\epsilon^{3}\left\{\frac{L^{4}}{6}\left(G_{2}-\frac{A_{2} L}{5}\right)\right. \\
& \left.-\frac{\beta_{0} L^{5}}{16}\left(G_{1}-\frac{A_{1} L}{6}\right)\right\}+\mathcal{O}\left(\epsilon^{4}\right) \quad \text { and so on... } \quad L=\log \left(Q^{2} / m^{2}\right)
\end{aligned}
$$

New Results: Massive

- Conformal theory $\beta_{i}=0$: all order result

$$
\tilde{\mathcal{L}}_{k}=\sum_{l=0}^{\infty}(-\epsilon k)^{l-1} \frac{L^{l}}{2 l!}\left(G_{k}+\delta_{0 l} K_{k}-\frac{A_{k} L}{l+1}\right)
$$

- Form Factor

$$
F=C\left(a_{s}\left(m^{2}\right), \epsilon\right) e^{\ln \tilde{F}} \longrightarrow \text { consistent with literature up to 3-loop }
$$

[Gluza, Mitov, Moch, Riemann ’07, '09]

- State-of-the-art results

$$
F_{1}, F_{2} \text { at 3-loop in large } N_{c}
$$

- New results in 1704.07846
F_{1} at 4-loop in large N_{c} and high energy limit

$$
\longleftrightarrow \text { upto } \frac{1}{\epsilon^{2}}
$$

F_{2} is suppressed by m^{2} / q^{2} in high energy limit

Determining Unknown Constants: Massive

Determining unknown constants $\mathrm{G}, \mathrm{K}, \mathrm{C}$ in large N_{c} limit
Comparing with explicit computations

$$
\begin{aligned}
& \left.G_{1} \text { to } \mathcal{O}\left(\epsilon^{2}\right), G_{2} \text { to } \mathcal{O}(\epsilon) \text { [Gluza, Mitov, Moch, Riemann }{ }^{07}{ }^{\circ} 09\right] \\
& G_{3} \text { to } \mathcal{O}\left(\epsilon^{0}\right) \text { new! } \longrightarrow F_{1} \text { at 3-loop } \\
& \text { [Henn, Smirnov, Smirnov, Steinhauser '16] } \\
& \text { [Gluza, Mitov, Moch, Riemann '09] } \\
& C_{1} \text { to } \mathcal{O}\left(\epsilon^{4}\right), C_{2} \text { to } \mathcal{O}\left(\epsilon^{2}\right), C_{3} \text { to } \mathcal{O}\left(\epsilon^{0}\right) \text { new! }
\end{aligned}
$$

A_{4} became available recently

Comments: Massive

- Excludes singlet contributions

- Excludes closed heavy-quark loops

Obey similar
exponentiation
[KÜhn, Moch, Penin, Smirnov '01] [Feucht, Kühn, Moch '03]
\leadsto Sub-leading in large N_{c} limit
\leadsto Hence, we have not considerer these

Massless Scenario

RG EQUATION: MASSLESS

- FF satisfies KG eqn

$$
-\frac{d}{d \ln \mu^{2}} \ln \tilde{F}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, \epsilon\right)=\frac{1}{2}\left[\tilde{K}\left(\hat{a}_{s}, \frac{m / 2}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)+\tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)\right]
$$

[Sudakov '56; Mueller '79; Collins '80; Sen '81]
Solved exactly the similar way

$$
\ln \tilde{F}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu^{2}}, \frac{m \eta^{2}}{\mu^{2}}, \epsilon\right)=\sum_{k=1}^{\infty} \hat{a}_{s}^{k}\left[\left(\frac{Q^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{\tilde{\mathcal{L}}}_{k}^{Q}(\epsilon)+\left(\frac{m^{2}}{\mu^{2}}\right)^{-k \epsilon} \hat{\tilde{\mathcal{L}}}_{k}^{n}(\epsilon)\right]
$$

Up to 4-loop: present

RG EQUATION: MASSLESS

- Conformal theory $\beta_{i}=0$: all order result

$$
\hat{\tilde{\mathcal{L}}}_{k}^{Q}=\frac{1}{\epsilon^{2}}\left\{-\frac{1}{2 k^{2}} A_{k}\right\}+\frac{1}{\epsilon}\left\{-\frac{1}{2 k} G_{k}\right\}
$$

- FF
[TA, Banerjee, Dhani, Rana, Ravindran, Seth '17]

$$
F=C e_{\text {Matching coefficient }=1}^{\ln \tilde{F}}
$$

- State-of-the-art results

$$
F \text { at 4-loop in large } N_{c}
$$

- New results in 1704.07846
F at 5-loop in large N_{c} and high energy limit

Determining Unknown Constants: Massless

Determining unknown constants in large N_{c} limit
Comparing with explicit computations
$\star G_{1}$ to $\mathcal{O}\left(\epsilon^{6}\right), G_{2}$ to $\mathcal{O}\left(\epsilon^{4}\right), G_{3}$ to $\mathcal{O}\left(\epsilon^{2}\right)$
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]
G_{4} to $\mathcal{O}\left(\epsilon^{0}\right)$ new! $\longrightarrow F$ at 4-loop
[Henn, Smirnov, Smirnov, Steinhauser, Lee '16]
$\star K_{i}=K_{i}\left(A_{k}, \beta_{k}\right)$ do not appear in the final expressions \leadsto get cancelled against similar terms arising from G

Comments: Massive \& Massless

G are same for massive and massless
\longrightarrow expected! Governed by universal cusp AD
Manifestly clear in our methodology

$$
\tilde{G}\left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon\right)=G\left(a_{s}\left(Q^{2}\right), \epsilon\right)+\int_{Q^{2}}^{\mu_{R}^{2}} \frac{d \mu_{R}^{2}}{\mu_{R}^{2}} A\left(a_{s}\left(\mu_{R}^{2}\right)\right)
$$

\star For massive K_{i} enter only into the poles of $\tilde{\mathcal{L}}_{k}$
\rightsquigarrow Constants and $\mathcal{O}\left(\epsilon^{k}\right)$ terms can be determined from massless calculation
\rightsquigarrow could lead to deeper understanding of the connection between massive \& massless FF

Process Independent Function

- QCD factorisation: massive amplitudes shares essential properties with the corresponding massless ones in the high-energy limit

[Moch, Mitov '07]

Universal and depends only on the external partons!

- Can be computed using simplest amplitudes: FF

$$
Z_{[q]}^{(m \mid 0)}=\frac{F\left(Q^{2}, m^{2}, \mu^{2}\right)}{\bar{F}\left(Q^{2}, \mu^{2}\right)}
$$

* Q^{2} independence is manifestly clear: governed by G, same for massive \& massless FF
$\star \mathcal{O}\left(\epsilon^{0}\right)$ at 3 -loop, upto $\mathcal{O}\left(1 / \epsilon^{2}\right)$ at 4 -loop \rightsquigarrow new!
\star Relates dimensionally regularised amplitudes to those where the IR divergence is regularised with a small quark mass.

Conclusions

\star RG equations governing massive \& massless quark-photon FF are discussed.

Elegant derivation for analytic solution is proposed
key idea: use bare coupling
$\star Q^{2}$ dependence is governed by G \& cusp AD: same for massive \& massless
\star Massive: non-trivial matching coefficient C

* Massive: F_{1} at 4-loop in large N_{c} and high energy limit to $\frac{1}{\epsilon^{2}}$

Massless: F at 5 -loop in large N_{c} and high energy limit to $\frac{1}{\epsilon^{3}}$

$$
\mathcal{T} \mathcal{H} \mathfrak{A N} \mathfrak{K} \text { YOU! }
$$

