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GOAL & MOTIVATION

•  Infrared divergences: important quantities
•  Consider: QCD corrections to photon-quark vertex

�µ(q1, q2) = Qq
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•  Also consider: the massless scenario

F1
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•  Important quantities:     is building block for variety of observables  

F1, F2• Vertex function: characterised by two scalar form factors

F1

•  Consider: Form factors of massive quarks 

V µ(q1, q2) = v̄(q2)�
µ(q1, q2)u(q1)

q1

q2

q

�⇤

e.g. Xsection of hadron production in           annihilation & derived quantities like forward-
backward asymmetry 

e�e+



GOAL & MOTIVATION

• State-of-the-art results

}m 6= 0 at 3-loopF1, F2
Nc limit in

[Henn, Smirnov, Smirnov, Steinhauser ’16]

m = 0 at 4-loop F1
in large

[Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

• Next steps: compute the full results for general
                              underway by several groups

Nc

 

SU(Nc)

• We address: What can we say about next order?
 indeed, IR poles can be predicted (partially) by 

exploiting RG evolution of FF
 F1 at 4-loop in largeNc and high energy limit uptom 6= 0

m = 0  F1 at 5-loop in large Nc and high energy limit upto
1/✏2

1/✏3
RESULTS

• We also obtain process independent functions relating massive & 
     massless amplitudes in high-energy limit at 3 & 4-loops RESULTS
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GOAL Exploit RG evolution of FF

[Manteuffel, Schabinger ’16]



PLAN OF THE TALK

RG evolution: massive
• Cute technique to solve

RG evolution: massless

Process independent functions

Conclusions



RG EQUATION: MASSIVE

•  FF satisfies KG eqn in dimensional reg.
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âs,

Q2

µ2
R

,
µ2
R

µ2
, ✏

◆�

[Magnea, Sterman ’90] 
[Gluza, Mitov, Moch, Riemann ’07, ’09]

[Ravindran ’06: For Massless]

[Sudakov ’56; Mueller ’79; Collins ’80; Sen ’81]
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•  Strategy: Use bare coupling      instead of renormalised oneâs as

âs

•  Goal: Solve the RG

âs ⌘ ↵̂s/4⇡

d = 4� 2✏

Q2 = �q2 = �(p1 + p2)
2

: scale to keep       dimensionlessµ
µR : renormalisation scale

Matching coefficient

F = Celn F̃

QCD factorisation, gauge & RG invariance

âs

• The form factor



SOLVING RG EQUATION: MASSIVE

 RG invariance of FF wrt µR

Cusp anomalous dimension

Boundary terms

K̃

✓
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âs,

Q2

µ2
R

,
µ2
R

µ2
, ✏

◆
= G

�
as

�
Q2

�
, ✏
�
+

µ2
RZ

Q2

dµ2
R

µ2
R

A
�
as

�
µ2
R

��

 6

d

d lnµ2
R

K̃

✓
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SOLVING RG EQUATION: MASSIVE

Need all quantities in powers of âs

âsInitial goal: Solve for          in powers of bareln F̃
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B 2 {K,G,A}

� 2 {m,Q, µR}

functions of �i, ✏
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Use

Expansion of       in powers of  B âs

âs = as(µ
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SOLVING RG EQUATION: MASSIVE

with

and so on…
The integral becomes a polynomial integral
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Ẑ�1,(1)
as

⌘2
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UN-RENORMALISED SOLUTION: MASSIVE

Solution of KG in powers of bare

with
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 Solved iteratively
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âs

To obtain the renormalised solution in powers of general 
as(µ

2
R) use d-dimensional evolution of 
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RENORMALISED SOLUTION: MASSIVE
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At two loop

and so on…



NEW RESULTS: MASSIVE

F = C
�
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• Form Factor

• State-of-the-art results
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• Conformal theory            : all order result �i = 0

at 3-loop in large NcF1, F2

consistent with literature up to 3-loop
[Gluza, Mitov, Moch, Riemann ’07, ’09]

[Henn, Smirnov, Smirnov, Steinhauser ’16]

• New results in 1704.07846
F1 at 4-loop in largeNc and high energy limit

is suppressed byF2 m2/q2

1
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upto
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in high energy limit



DETERMINING UNKNOWN CONSTANTS: MASSIVE
Determining unknown constants G, K, C in large 

Comparing with explicit computations

Nc limit

G3 O(✏0)to new!  
[Henn, Smirnov, Smirnov, Steinhauser ’16]

G1 G2O(✏2) O(✏)to ,

F1 at 3-loop

K1,K2 [Gluza, Mitov, Moch, Riemann ’09]

new!  K3

[Gluza, Mitov, Moch, Riemann ’07 ’09]

C1 to O(✏2) , C2 to O(✏) [Gluza, Mitov, Moch, Riemann ’09]

C1 to O(✏4) , C2 to O(✏2) O(✏0), C3 to new!  

explicit computation
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to

A4 became available recently [Henn, Smirnov, Smirnov, Steinhauser ’16]
[Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]



COMMENTS: MASSIVE

• Excludes singlet contributions

• Excludes closed heavy-quark loops Obey similar
exponentiation

[Kühn, Moch, Penin, Smirnov ’01] 
[Feucht, Kühn, Moch ’03]

 Sub-leading in large        limitNc Hence, we have not considerer these
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MASSLESS SCENARIO



RG EQUATION: MASSLESS

•  FF satisfies KG eqn
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Solved exactly the similar way

[Sudakov ’56; Mueller ’79; Collins ’80; Sen ’81]

[Ravindran ’06]

5-loop solution new!  

Up to 4-loop: present [Moch, Vermaseren, Vogt ’05]
[Ravindran ’06]
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RG EQUATION: MASSLESS

• State-of-the-art results

• Conformal theory            : all order result �i = 0

ˆ̃L
Q
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[Bern, Dixon, Smirnov ’05]

[TA, Banerjee, Dhani, Rana, Ravindran, Seth ’17]• FF

at 4-loop in large Nc [Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

• New results in 1704.07846

upto 1

✏3

F

at 5-loop in large Nc and high energy limitF
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F = Celn F̃

Matching coefficient = 1



DETERMINING UNKNOWN CONSTANTS: MASSLESS

Determining unknown constants in large 

Comparing with explicit computations

Nc limit

G1 to O(✏6) O(✏4) O(✏2), G2 to , G3 to
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser ’09]

[Gehrmann, Glover, Huber, Ikizlerli, Studerus ’10]

O(✏0)to new!  at 4-loopG4 F
[Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

do not appear in the final expressionsKi = Ki(Ak,�k)

 get cancelled against similar terms arising from G



COMMENTS: MASSIVE & MASSLESS

G are same for massive and massless

expected! Governed by universal cusp AD

Manifestly clear in our methodology

[Mitov, Moch ’07]
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enter only into the poles ofFor massiveKi L̃k

 Constants and O(✏k) terms can be determined from 
massless calculation

 could lead to deeper understanding of the connection 
between massive & massless FF



PROCESS INDEPENDENT FUNCTION

M(m) =
Y

i2{all legs}


Z(m|0)
[i]
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MasslessMassive

[Moch, Mitov ’07]

Universal and depends only on the external partons!
• Can be computed using simplest amplitudes: FF

Z(m|0)
[q] =

F (Q2,m2, µ2)

F (Q2, µ2)

• QCD factorisation: massive amplitudes shares essential properties with 
the corresponding massless ones in the high-energy limit 

independence is manifestly clear: governed by G, same for Q2

at 3-loop, uptoO(✏0) O(1/✏2) at 4-loop new!  
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Relates dimensionally regularised amplitudes to those where the 

massive & massless FF

IR divergence is regularised with a small quark mass. 



CONCLUSIONS

RG equations governing massive & massless quark-photon FF are 
discussed.

Elegant derivation for analytic solution is proposed

key idea: use bare coupling

dependence is governed by G & cusp AD: same for Q2

Massive: non-trivial matching coefficient C

Massive: F1 at 4-loop in largeNc
1

✏2
to

Massless:
1

✏3
at 5-loop in large NcF to
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massive & massless

and high energy limit

and high energy limit

THANK YOU!


