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Past



  

Story of Mr Bayes: 1763



  

Bayes problem.
● Location of blue ball based on how many balls 

are to right and how many to left.



  

Bernoulli trial problem
●  A baised coin 

– If probability of head in a single trial is p.

– What is the probability of k heads in n trials.

– P(k|p, n) = C(n, k) pk (1-p)n-k 

● The inverse problem
– If k heads are observed in n trials.

– What is the probability of occurence of head in 
a single trial. 

● P(p|n, k) ~ P(k|n, p)
● P(Cause|Effect) ~ P(Effect| Cause) 



  

Laplace 1774
● Independetly rediscoverded.

● In words rather than Eq, “Probability of a cause given an event 
/effect is proportional to the probability of the event given its 
cause”. 
– P(Cause|Effect) ~ P(Effect| Cause),    p(θ|D) ~ p(D|θ) 
– Consider values for different θ then it becomes a dist. 

– Important point is LHS is conditioned on data.

● His friend Bouvard used his method to calculate the masses of  
Saturn and Jupiter.

● Laplace offered bets of 11000 to 1 odd and 1million to 1  that they 
were right  to 1% for Saturn and Jupiter. 
– Even now Laplace would have won both bets.



  

1900-1950 
● Largely ignored after Laplace till 1950.
● Theory of probability, 1939 by Harold Jeffrey

– Main reference.

● In WW-II, used at Bletchley Park to decode 
German Enigma cipher.

● There were conceptual difficulties
– Role of prior

– Data is random or model parameter is random



  

1950 onwards
● Tide had started to turn in favor of Bayesian 

methods.
● Lack of proper tools and computational power 

main hindrance.
● Frequentist methods were simpler which made 

them popular.



  

Cox's Theorem: 1946
● Cox 1946 showed that sum and product rule can be derived from 

simple postulates. The rest of Bayesian probability follows from 
these two rules.

p(θ|x) ~ p(x|θ)p(θ)



  

Metropolis algorithm: 1953



  

Who did what?
● Metropolis only was only responsible for  

providing computational time.
● Marshall Rosenbluth provided the solution to 

the problem
● Arianna Rosenbluth wrote the code.



  

Metropolis algorithm: 1953
● N interacting particles.
● A single configuration ω, can be completely specified by giving position and velocity of all the 

particles. 
– A point in R2N space.

● E(ω), total energy of the system

● For system in equilibrium      p(ω) ~ exp (- E(ω) / kT )
● Computing any thermodynamic property, pressure, energy etc, requires integrals,which are 

analytically intractable 

● Start with arbitrary config  N particles.
● Move each by a random walk and compute ΔE the change in energy between old and new config
● If: ΔE < 0, always accept.

● Else: accept stochastically with probability exp (- ΔE / kT )  
● Immediate hit in statistical physics.



  

Hastings 1970
● The same method can be used to sample an 

arbitrary pdf p(ω) 
– by replacing E(ω)/kT → -ln p(ω)
– Had to wait till Hastings

● Generalized the algorithm and derived the 
essential condition that a Markov chain out to 
satisfy to sample the target distribution.

● Acceptance ratio not uniquely specified, other 
forms exist.

● His student Peskun 1973 showed that Metropolis 
gives the fastest mixing rate of the chain



  

1980
● Simulated annealing Kirkpatrick 1983

– To solve combinatorial optimization problems using MH algorithm 
using ideas of annealing from solid state physics. 

● Useful when we have multiple maxima and you want to 
● select a globally optimum solution.
● Minimize an objective function C(ω) by sampling from     

exp(-C(ω)/T) with progressively decreasing T.
●



  

1984 
● Expectation Maximization (EM) algorithm 

– Dempster 1977

– Provided a way to deal with missing data and hidden 
variables. Hierachical Bayesian models.

– Vastly increased the range of problems that can addressed by 
Bayesian methods.

– Deterministic and sensitive to initial condition.

– Stochastic versions were developed 

– Data augmentation, Tanner and Wong 1987

● Geman and Geman 1984
– Introduced Gibbs sampling in the context of image 

restoration. 

– First proper use of MCMC to solve a problem setup in 
Bayesian framework.



  

MH algorithm

f(x)
q(y|xt)

xt y
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1990
● Gelfand and Smith 1990

– Largely credited with revolution in statistics,

– Unified the ideas of Gibbs sampling, DA algorithm 
and EM algorithm. 

– It firmly established that Gibbs samling and MH 
based MCMC algorithms can be used to solve a 
wide class of problems that fall in the category of 
hierarchical bayesian models. 

●



  

Citation history of Metropolis et al/ 1953

● Physics: well known from 1970-1990
● Statistics: only 1990 onwards
● Astronomy: 2002 onwards 



  

Astronomy's 
conversion- 2002 



  

Astronomy: 1990-2002
● Loredo 1990

– Influential article on Bayesian probability theory

● Saha & Williams 1994
– Galaxy kinematics from absorption line spectra.

● Christensen & Meyer 1998
– Gravitational wave radiation

● Christensen et al. 2001 and Knox et al. 2001
– Comsological parameter estimation using CMB data

● Lewis & Bridle 2002
– Galvanized the astronomy community more than any 

other paper.



  

●Lewis & Bridle 2002
● Laid out in detail the Bayesian MCMC 

framework
● Applied it to one of the most important data sets 

of the time, the CMB data.
● Used it to address a significant scientific 

question- fundamanetal parameters of the 
universe.

● Made the code publicly available
– Making it easier for new entrants.



  

Metropolis in practise
● Requires tuning of proposal distribution

– Too wide, 
● acceptance ratio close to zero, too many  rejections, 

move far but rarely

– Too small
● acceptance ratio close to 1, move frequently but does not 

travel far.

● Solutions
– Adaptive Metropolis

● Tune based on past estimate of covariance, violates 
Markovian property, Trick is that adaptation becomes 
slow and slow with time.

– Ensemble and affine invariant samplers



  

Present



  

Bayesian hierarchical models
● p(θ | {xi} ) ~ p(θ)  ∏ i  p( xi | θ )

● p(θ, {xi} | {yi}) ~ p(θ)  ∏ i  p( xi | θ )  p(yi | xi , σyi)
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Extinction of stars at various distances along a line of 
sight



  

● What we want to know

– Overall distance extinction relationship and its dispersion (α,Emax,σE).

– Extinction of a star and its uncertainty p(Et,j). 

● Each star has some some measurement with some uncertainty 

– p(Et,j|Ej) ~ Normal(Ej,σj).



  

BHM
● Some stars have very high uncertainty. 
● There is more information in data from other 

stars. 

– p(Et,j|α,Emax,σE,Ej,σj) ~ p(Et,j|α,EmaxσE) p(Et,j | E,σj)

–

● But, population statistics depends on stars, they 
are interrelated.

● We get joint info about population of stars as 
well as for individual stars. 

– p(α,Emax,σE, Et,j|Ej,σj) ~ p(α,Emax,σE) ∏j p(Et,j|
α,EmaxσE) p(Et,j | Ej,σj) 



  

Shrinkage of error, shift towards mean



  



  

Handling uncertainties
● p(θ, {xti} | {xi}, {σxi} ) ~  p(θ)  ∏i   p( xti | θ )  p(xi | xti , σx,i)

● p(xi | xti , σx,i) ~ Normal( xi | xti, σyi)
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Missing variables: traditionally marginalization

● p(θ, {xti} | {xi}, {σxi} ) ~  p(θ)  ∏i   p( xti | θ )  p(xi | xti , σx,i)
● p(xi | xti , σx,i) ~ Normal( xi | xti, σyi)
● Certain σxi → ∞
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Hidden variables
● p(θ, {xi} | {yi}, {σyi} ) ~ p(θ) ∏i  p( xi | θ )  p(yi | xi , σyi)
● A function y(x) exists for mapping x → y
● p(yi | xi , σyi) ~ Normal( yi | y(xi), σyi)
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Intrinsic variables of a star.
● Intrinsic params: x = ([M/H], τ, m, s, l, b, E)
● Obsevables:       y=(J, H, K,  Tef, log g, [M/H], l, b)
● Given x one can compute y using isochrones

● There exists a function y(x) mapping x to y.



  

3d Extinction- E
B-V

(s)
● Pan-STARRS 1 and 2MASS

Green et al. 2015



  

Exoplanets



  

● xi = (v0, κ, T, e, ω, τ, S) 
● Mean velocity of center of mass v0

● Semi-amplitude κ 

● Time period T
● Eccentricity e
● Angle of pericenter from the ascending node ω
● Time of passage through the pericenter τ
● Intrinsic dispersion of a star S



  



  

● Hogg et al 2010



  

● Hogg et al 2010



  

How to solve BHM models

● Two step: Hogg et al. 2010

– p(θ|{yi}, σy) ~ p(α) ∏ i  ∫ dxi p( yi |xi ,σyi) p(xi |θ)

                     ~ p(α)  ∏ i  ∫ dxi p( yi |xi , σyi ) p(xi) [p(xi|θ)/p(xi )]

                                                    sample xik  

                   ~ p(α)  ∏ i  (1/K) ∑ k  [p(xik | θ) / p(xik)]   

                                 Importance Sampling

● MWG: 

– p(θ, {xi} | {yi} , {σyi}) ~ p(θ)  ∏ i  p( yi | xi , σyi ) p(xi|θ)



  

MH algorithm

f(x)
q(y|x
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Metropolis Within Gibbs

● Gibbs sampler requires sampling from conditional 
distribution.

● Replace this with a MH step.

● Rather than updating all at one time, one can do it one 
dimension at a time. 

● A complicated distribution can be broken up into sequence of 
smaller or easier to samplings is the main strength of this. 



  

BMCMC- a python package
● pip install bmcmc
● https://github.com/sanjibs/bmcmc
● Ability to solve hierarchical Bayesian models.
● Documentation:

– http://bmcmc.readthedocs.io/en/latest/

https://github.com/sanjibs/bmcmc
http://bmcmc.readthedocs.io/en/latest/


  



  

Why do we need model selection?

● Models are designed to explain and understand the data.

● In general, we do not know the true model, we build 
models to fit the observed data and keep improving them 
by adding new features. 

● More than one competing model or theory

● Parameter fitting, the number of parameters not known.



  

Why do we need model selection 
criterion?

● As we increase the number of parameters the 
model will fit the data better and better.



  

● 10 data points from function y=sin(2πx)+ε (green) 

● fitted by polynomials (red) of degree M.

● What will happen if we add a new point?

Oscillating function like  Asin(nx) 
can be made to pass through 
all data points. It has only two 
Parameters.

Bishop book



  

● Polynomial model parameters θ=θ(Ytrain)

● E(θ,Ytest)=(1/N)∑i {y(xi;θ) - yi }2

● For M<3, E is very high, as model too 
simple/inflexible/rigid.

● For 3<M<8, not much change, power 
series expansion of sin(x) contains 
terms of all orders.

● For M=9, Etrain =0, 10 dof for 10 data 
points, however Etest very high.

Bishop book



  

Why do we need model selection 
criterion?

● As we increase the number of parameters the model will fit the 
data better and better.

● Given a new data it will perform badly.
– overfitting

– We do not want to overfit the models. 
● Cross validation

● Bayesian model comparison has the built in Occams factor that 
penalizes more complex models. However, it is not easy to do.



  

Cross validation

● How well will the model work on future data set.
● Observed Data set→ Training set + Test/Validation set

● One test set:
– (70,30), (50,50),Unreliable, wastes too much data

● Exhaustive:
– Leave-p-out cv (LPOCV): C(n,p), C(100,30)~3 1025

– Leave-one-out cv (LOOCV):   n

– Costly

● K-fold cross validation:
– Split into K subsamples, use as validation one of them, repeat k times. 

– Cheaper.

– Use k=10, not too expensive does not waste too much data.



  

Bayesian model comparison 
(Bayes Factor)

Bayes factor of model M2 wrt M1 . Model M2 has θ as a free parameter, while model M1 has a 
fixed value of  θ0 for it.

B21  =  p(D|M2) / p(D|M1)

      =  ∫ p(D|θ) p(θ)dθ / p(D|θ0)

      =  [L(θmax) Δθlikelihood / Δθprior] / L(θ0)

      =  [L(θmax) / L(θ0)] [Δθlikelihood / Δθprior]
Δθ

likelihood

Δθ
prior

θ
max

θ

Bishop book

L

p(θ)=1/Δθ
prior



  

Bayesian model comparison 
(Bayes Factor)

●B21=p(D'|H2)/p(D'|H1)

● A simple model H1 only makes a limited range of predictions.

● A complex model H2 (more free prams) is able to predict a large range of data sets. 

● Note, ∫p(D|H1) d D =1

● Hence, for observed data D',  p(D'|H2)  < p(D'|H1)

MacKay book Horizontal axes: space of all possible data sets



  

Bayes factor: caveats
● Bayesian Model selection comparison is complicated.

– B21=p(D|M2)/p(D|M1)     

– =[L(θmax) / L(θ0)] [Δθlikelihood / Δθprior]

– For parameter estimation range of priors is not an issue but 
for model selection it is. 

● In most cases we do not have a reasonable sense of range of 
priors.

– What is the prior for the coefficients of a polynomial?

– Computing Bayes factor is computationally challenging. 
● p(D|M)=∫ p(D|θ,M)p(θ|M) dθ
● Likelihood is peaked and confined to a narrow region but has long 

tails whose contribution cannot be neglected.



  

Bayes factor interpretation
Kass & Raftery 1995



  

Information criteria
● Y={y1, y2, …, yn}

– ln p(Y|θ)= ln [ ∏i p(yi|θ) ]=  ∑i ln p(yi|θ) 

● AIC: Akaike 1974 
– -ln p(Y|θ)+d

– Oct 2014, 14000 cites, 73rd most cited

– Frequentist. Based on information theory.

● BIC: Schwarz 1978
– -ln p(Y|θ)+d (ln n )/2

– Based on Bayesian model comparison

– An approximation of Bayesian evidence p(D|M).

– Roughly equivalent to model selection based on Bayes Factor.

– Does not require prior, making it useful when priors are difficult to 
compute.

● Of the form: -(Goodness of fit)+(penalty for model complexity)



  

Statistical learning

Watanabe 2009 Book (Algebraic Geometry and Statistical Leraning Theory)



  

Other information criteria.



  

WAIC and WBIC
● Works for Singular statistical models.
● Makes use of predictive density. 
● In the asymptotic limit of large sample size both 

AIC and WAIC
– Equivalent to LOOCV

– Equivalent to expected KL divergence of predicted 
distribution from the true distribution.



  

BIC vs AIC
● First term giving likelihood of data (goodness of 

fit) is same.
● But penalty term for model complexity is more 

severe in BIC 
– For n>=8,  d (ln n) /2> d   

● BIC favors smaller models than AIC.
● Differences will be more pronounced for large 

n.



  

BIC vs AIC/WAIC
● Asymptotically consistent: 

– If the candidate list of models contains the true 
model, the method will asymptotically select the 
true model with probability one.

● Asymptotically efficient:
– The method will asymptotically select the model 

that minimizes the mean squared error of 
prediction.

● AIC is asymptotically efficient yet not consistent
● BIC is asymptotically consistent yet not 

efficient.

Burnham & Anderson 2002, Lecture by Cavanaugh 2012, Spiegelhalter 2014 



  

BIC vs AIC: practical perspective
● AIC: primary goal of modelling is predictive

– Build model to fit future data effectively

● BIC: primary goal of modelling is descriptive
– Build a model with most meaningful factors 

influencing outcome based on an aseessment of 
relative importance.  

● As the sample size grows, predictive accuracy 
improves as subtel effects are admitted to the 
model. AIC will increasingly favor the inclusion 
of such effects; BIC will not.

Source: Lecture Cavanaugh 2012



  

Which to choose.
● Both Bayesian and predictive have their 

strength and weaknesses.
● If the model is physical and the choice of priors 

is well justified, then Bayes factor are the best 
suited.  
– BIC can also be used, if priors an issue.

● If model is explanatory and empirical, which 
means predictive accuracy for future data is 
desired, choose WAIC.



  

Future



  

Future

Machine Learning Image:www.iamwire.com



  

Image: https://www.edureka.co

Deep Learning



  

Bayesian statistics a glue connecting different 
fields.

● My or your model fitting problem is also everyone 
elses problem.

● Growth in data science, inference.
– Predictive analysis of great use for industry.

– Confluence of industry and science. (facebook, google).

– autodiff, pytorch, tensorflow

● Development of good optimizers.

● Platforms for probabilistic inference.
– Stan, Edward, PyMC3



  

Future
● Big Data

– Tall (N), Wide (d), 

– Model: Complexity (d), Hierarchies 

● MCMC too slow
– MLE, optimization

– Speed up traditional MCMC for tall data.

– Hamiltonian Monte Carlo

– Variational Bayes



  

Bayesian nonparametrics (BNP)
● Useful for big data.
● Properties of big data

– Feature space is large →  complex models

– Difficult to find suitable model. 



  

Big data analogy
● More the data, more 

substructures and more 
hierachy of substructures.

● A flexible model whose 
complexity can grow with 
data size.
– Polynomials with degree 

being free

– Gaussian mixture model 
with number of clusters free 



  

BNP
● p(x | θ) = ∑ αi  Normal(x|μi, σi2),      i={1,…,K}
● Put a prior on p(K)
● Can do this without Bayesian model comparison.
● Dirichlet Process mixture models (Neal 2000).

– A prior on p(α), K → ∞



  

Pseudo marginal MCMC for big data

● Speeding up MCMC for big data.
– Subsample the data and compute the likelihood

– f ’(x,y), y set of rows to use

– f ’(x,y)= exp[∑ i log f(xi)],  for each i in y
– Likelihood becomes stochastic.

● Other cases of  stochastic likelihood. 
– Marginalization problems

● p(θ|x)=  ∫ p(x|θ,α)dα  =  p(∫ ∫ x, z|θ, α, z)dα dz
– Doubly intractable integrals



  

Doubly intractable integrals

● Singly intractable integral.

– p(θ|y) = p(y|θ) p(θ)/p(y)
– The normalization constant p(y) (Evidence) is not known.

– But we do not need to know it, to compute expectations. 

– We only need to sample from it. 

– E[ f ] =  ∫ f(θ) p(θ|y) dθ = 1/N ∑ f(θi)
 

● What if  p(y|θ) = f(y;θ)/Z(θ) ?
– Now expectation is doubly intractable integral.



  

● p(x|θ, S)= ρ(x|θ) S(x) /  ∫ ρ(x|θ) S(x) dx
● Fitting stellar halo density for stars in two cones 

(SDSS).



  

Handling stochastic likelihoods
● Monte Carlo Metropolis-Hastings 

● If U  <  f(x’) / f(x): 
xl.append(x’)

Else:

xl.append(x)

● What if the function f is stochastic?



  

Pseudo Marginal MCMC
● Andrieu and Roberts (2009), Beaumont 2003

Sample auxillary variable yn

If U < f ’(xn, yn)/f ’(x, y): 
xl.append(xn)

yl.append(yn)

Else:

xl.append(x)

yl.append(y)

● Does sample f(x) provided f ’(x, y) is unbiased.

– Ey[f ’(x, y)]=f(x)

● If Var[log f ’(xn, yn)-log f ’(x, y)] > 1, will get stuck.



  

Approximate MCMC
Murray 2006, Liang 2011, Sharma 2014, Sharma 2017 

● Sample yn

● If U < f ’(xn, yn)/f ’(x, yn): 
xl.append(xn)

yl.append(yn)

Else:

xl.append(x)

yl.append(yn)

●

● Does not sample f(x),  rather  fapprox(x) 
● More stable, does not get stuck.



  

Pseudo marginal MCMC for big data

● Speeding up MCMC for big data.

● Subsample the data and compute the likelihood

– f ’(x, y), y set of rows to use

– f ’(x, y)= exp[ ∑i log f(xi)],  for each i in y

● Unbiased for log(f(x)) but this does not give an unbiased 
estimator of f(x).

● Bardent 2014, Korattikara 2014, Maclaurin & Adams 
2014, Quiroz (2016,2017).



  

Hamiltonian Monte Carlo 
(Duane 1987, Neal 1995) 

● When d is large 
the typical set is 
confined to a 
thin shell.

Betancourt 2017



  
Jump to unexplored areas (like 
punching through a wormhole). Betancourt 2017



  

Hamiltonian Monte Carlo
● H= U(θ)+K(u) = -log p(θ|x) +u2 /2
● For i = 0, M :

Sample new momentum- ui ~ N(0, 1)

Advance-                         (θ', u')=Leapfrog(θi, ui)

if U < Min(1,p(θ', u')/p(θi, ui)) :

     (θi+1, ui+1)=(θ', u')
else:

     (θi+1, ui+1)=(θi, ui)



  

HMC: caveats
● Need Gradients

– Magic of Automatic differentiation

– Driven by rapid advances in machine learning 

● Tuning of stepsize :
– The No-U-Turn-Sampler (NUTS) 

● Hoffman & Gelman (2014)

● Solves the high d problem. 

● What about large N problem?

– Subsampling HMC,  

– Possible to do says Dang et al. (2017)

– However, Betancourt 2015 says that it is difficult to do so, 
fundamental incompatibility. 



  

Variational Bayes
● Posterior:                          

● p(θ|x) = p(x|θ) p(θ) / p(x)
● Approximate posterior by 

● q(θ|λ)

● KL: Kullback-Leibler divergence

KL(q||p) =  ∫ q(θ|λ) log [q(θ|λ) /p(θ|x)]

λ* = arg min KL(λ)
Note p(x) is hard to compute

● ELBO: The Evidence Lower Bound

ELBO(λ) =  ∫ q(θ|λ) log p(θ, x) / q(θ|λ)

log p(x)=KL(λ) +ELBO(λ)

λ*= arg max ELBO(λ)

ELBO

KL

log p(x)



  

Variational Bayes

● Reduces from sampling to an optimization problem.
● ADVI: 

– Automatic differentiation, Variational inference

– Leveraging advances in ML

– Stan, Edward, (Kucukelbir 2017)

– “Black box inference” just like we had for MCMC

● Works both for large N and d. 



  

Summary
● Hierarchical Bayesian models allow you to tackle a 

wide range of problems in astronomy.
● Large N: Bayesian nonparametric modelling.
● Large dim d -Hamiltonian Monte Carlo
● Large N, large d- Variational Bayes.
● For more info and Monte Carlo based algorithms to 

solve Bayesian inference problems see, Sharma 
2017
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