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Past



Story of Mr Bayes: 1763

LIL. A Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev,
Mr. Bayes, F. R. . communicated by Mr.
Price, i a Letter to John Canton, 4. M.
E.R.S.

- Dear Sir,

Read Dec. 23, T Now fend you an effay which I have

1703 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.
Experimental philofophy, you will find, is nearly in-
terefted in the fubje of it; and on this account there
feems to be particular reafon for thinking that a com-
munication of it to the Royal Society cannot be im-

proper. )



Bayes problem.

* Location of blue ball based on how many balls
are to right and how many to left.




Bernoulli trial problem

* A baised coin
- If probability of head in a single trial is p.

- What is the probability of k heads in n trials.
- P(k|p, n) = C(n, k) pk(1-p)nk

* The inverse problem

- |If k heads are observed in n trials.

- What is the probability of occurence of head In
a single trial.

* P(p|n, k) ~ P(k|n, p)
« P(Cause|Effect) ~ P(Effect| Cause)



Laplace 1774

* Independetly rediscoverded.

 In words rather than Eq, “Probability of a cause given an event
/effect is proportional to the probability of the event given its
cause”.

- P(Cause|Effect) ~ P(Effect| Cause), p(0|D) ~ p(D|0)
— Consider values for different 6 then it becomes a dist.
- Important point is LHS is conditioned on data.

* His friend Bouvard used his method to calculate the masses of
Saturn and Jupiter.

 Laplace offered bets of 11000 to 1 odd and 1million to 1 that they
were right to 1% for Saturn and Jupiter.

- Even now Laplace would have won both bets.



1900-1950

* Largely ignored after Laplace till 1950.
* Theory of probability, 1939 by Harold Jeffrey

— Main reference.

* In WW-II, used at Bletchley Park to decode
German Enigma cipher.

 There were conceptual difficulties

- Role of prior
- Data Is random or model parameter is random



1950 onwards

* Tide had started to turn in favor of Bayesian
methods.

» Lack of proper tools and computational power
main hindrance.

* Frequentist methods were simpler which made
them popular.



Cox's Theorem: 1946

* Cox 1946 showed that sum and product rule can be derived from
simple postulates. The rest of Bayesian probability follows from
these two rules.

p(H|D+ p(H|I)=1 Sum Rule,

p(H,D|I) = p(H |D, )p(D|I) = p(D|H,)p(H |I) Product Rule.

DIH, I)p(H |1 ikeli g
p(DIH, D)p(H |I) Posterior — Likelihood x Prior

PUID D ===y Evidence

P(6]x) ~ p(x]|0)p(6)



Metropolis algorithm: 1953

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicuoras METROPOLIS, ARIANNA W, RoseENBLUTH, MARSHALL N. ROSENBLUTH, AND Aucusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

Epwarp TELLER,* Department of Physics, Undversity of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have heen obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume eguation of state and to a four-term virial coefficient expansion.



Who did what?

* Metropolis only was only responsible for
providing computational time.

 Marshall Rosenbluth provided the solution to
the problem

 Arlanna Rosenbluth wrote the code.



Metropolis algorithm: 1953

N interacting particles.

A single configuration w, can be completely specified by giving position and velocity of all the
particles.

- A point in R2nspace.
E(w), total energy of the system

For system in equilibrium  p(w) ~ exp (- E(w) / kT )

Computing any thermodynamic property, pressure, energy etc, requires integrals,which are
analytically intractable

P [ F(w)exp[—E(w)/ kT |dw
— 7 :

Start with arbitrary config N particles.

Move each by a random walk and compute AE the change in energy between old and new config
If: AE < 0, always accept.

Else: accept stochastically with probability exp (- AE / kT )

Immediate hit in statistical physics.



Hastings 1970

 The same method can be used to sample an
arbitrary pdf p(w)
- by replacing E(w)/KT = -In p(w)
- Had to wait till Hastings

* Generalized the algorithm and derived the
essential condition that a Markov chain out to
satisfy to sample the target distribution.

» Acceptance ratio not uniguely specified, other
forms exist.

» His student Peskun 1973 showed that Metropolis
gives the fastest mixing rate of the chain



1980

Simulated annealing Kirkpatrick 1983

— To solve combinatorial optimization problems using MH algorithm
using ideas of annealing from solid state physics.

Useful when we have multiple maxima and you want to
select a globally optimum solution.

Minimize an objective function C(w) by sampling from
exp(-C(w)/T) with progressively decreasing T.



1984

* Expectation Maximization (EM) algorithm

- Dempster 1977

- Provided a way to deal with missing data and hidden
variables. Hierachical Bayesian models.

- Vastly increased the range of problems that can addressed by
Bayesian methods.

- Deterministic and sensitive to initial condition.
— Stochastic versions were developed
- Data augmentation, Tanner and Wong 1987

e Geman and Geman 1984

- Introduced Gibbs sampling in the context of image
restoration.

- First proper use of MCMC to solve a problem setup in
Bayesian framework.



MH algorithm

a(y|x,) £(x)

A

X.Y

Algorithm 1: Metropolis—Hastings Algorithm

Input: Starting point x1, function f(x), transition kernel function ¢(y|x)
Output: An array of N points x1,x2,...,4Nn

for t=1to N —1do

Obtain a new sample y from ¢ (y|x;) ;

Sample a uniform random variable U ;

if U < ﬁ%ﬁﬁf} then x,11 = y else w41 = x5

end




| Gibbs Sampling

m(x)

q(z5 < x2) = w(z2 | 1)

q(z] < z1) = (1| z2)
——

Image: Ryan Adams



1990

e Gelfand and Smith 1990

- Largely credited with revolution in statistics,

- Unified the ideas of Gibbs sampling, DA algorithm
and EM algorithm.

- It firmly established that Gibbs samling and MH
based MCMC algorithms can be used to solve a
wide class of problems that fall in the category of
hierarchical bayesian models.



Citation history of Metropolis et al/ 1953

* Physics: well known from 1970-1990
o Statistics: only 1990 onwards
» Astronomy: 2002 onwards

Citations
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Astronomy: 1990-2002

Loredo 1990

- Influential article on Bayesian probability theory
Saha & Williams 1994

- Galaxy kinematics from absorption line spectra.
Christensen & Meyer 1998

- Gravitational wave radiation

Christensen et al. 2001 and Knox et al. 2001

- Comsological parameter estimation using CMB data
Lewis & Bridle 2002

- Galvanized the astronomy community more than any
other paper.



eLewis & Bridle 2002

* Laid out in detall the Bayesian MCMC
framework

* Applied it to one of the most important data sets
of the time, the CMB data.

e Used It to address a significant scientific
guestion- fundamanetal parameters of the
universe.

 Made the code publicly available

- Making it easier for new entrants.



Metropolis In practise

* Requires tuning of proposal distribution

- Too wide,

e acceptance ratio close to zero, too many rejections,
move far but rarely

— Too small

e acceptance ratio close to 1, move frequently but does not
travel far.

e Solutions

- Adaptive Metropolis

 Tune based on past estimate of covariance, violates
Markovian property, Trick is that adaptation becomes
slow and slow with time.

- Ensemble and affine invariant samplers



Present



Bayesian hierarchical models

+ (0| {x}) ~pO) 1, p(x | 0) e

* p(0, x| W) ~pO) Il p(x; 1 0) ply: | x;, 0,)

Level-0: Population > 0
Level-1: Individual Object-intrinsic ————» N T T R
Level-1: Individual Object-observable —» Yo | Y1 Y




Extinction of stars at various distances along a line of
sight
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« Each star has some some measurement with some uncertainty
- p(E;|E;) ~ Normal(E;,0;).
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 What we want to know
— Overall distance extinction relationship and its dispersion (@, E,,..,O¢)-

- Extinction of a star and its uncertainty p(Ey;).



BHM

 Some stars have very high uncertainty.

* There is more information in data from other
stars.

- p(Et,jla'EmaerErEerj) ~ p(Et,jlarEmaxcE) p(Etjl E'Oj)

* But, population statistics depends on stars, they
are interrelated.

* \We get joint info about population of stars as
well as for individual stars.

- p(arEmaxroEl Et,JlEJIOJ) ~ p(arEmaxrcE) I_IJ p(Et,Jl
(ermaXOE) p(Etjl Ej'Oj)



Shrinkage of error, shift towards mean

7
6 $ Naive ll
Hierarchical
5_
Ei
E Y
w3 e O = 11 20 S PR I—
5 % -
— 2 1 » P
) -
.E ff -
g 1 P
L e
o1y -~
1] I
_2 , ,
0 1 2 3 4 5 6

Distance d [kpc]






Handling uncertainties
* p(0, {xt} | {x}, {oa}) ~ p(O) 1L p(xt: | 0) p(x; | xt, 0,,)

* p(x; | xt;, 0,;) ~ Normal( x; | xt, g,,)

Level-0: Population

Level-1: Individual Object-intrinsic

Level-2: Individual Object-observable X X Xy




Missing variables: traditionally marginalization

* p(0, {xt} | {x}, {oa}) ~ p(O) 11 p(xt | 0) p(x: | xt;, 0,))

p(x; | xt, 0.;) ~ Normal( x; | xt, 0 Z-)

@am o, e)

Level-0: Population 5
Level-1: Individual Object-intrinsic X, Xy

Level-2: Individual Object-observable Xy Xy




Hidden variables

* p(6, {x} | {yd, {in} )~pO) 1Lp(x | 0) p(v: | x;, Uyz‘)

* Afunction y(x) exists for mapping x — vy

* py: | x;, in) ~ Normal(y; | y(x)), in)

Level-0: Population

Level-1: Individual Object-intrinsic

Level-1: Individual Object-observable

g




Intrinsic variables of a star.

Intrinsic params: x = ([M/H], t,m, s, l, b, E)
Obsevables: y=(, H, K, T, log g, IM/H], I, b)
Given x one can compute y using isochrones

There exists a function y(x) mapping x to y.



e Pan-STARRS 1 and 2ZMASS
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Radial velocity (km s™)
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e x;=(v,k,T,e w,t,S)

Mean velocity of center of mass v,

Semi-amplitude k

Time period T

Eccentricity e
* Angle of pericenter from the ascending node w
* Time of passage through the pericenter «

* Intrinsic dispersion of a star S

Q) Pmsin I
T1V3(M +m)3J1 — e

/1 2
tan(f/2) = 1 i_: tan(#/2), u—esinu = ?E(t —T).

v(t) = k [cos(f + ) + e cosw] + vy, withk =
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 Hogg et al 2010

eccentricity e

eccentricity e



 Hogg et al 2010
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How to solve BHM models

 Two step: Hogg et al. 2010
- p(Ol{y, o) ~p(@) I1 ;S dxip(y; | x;,0,) plx; | 6)
~pla) [T, S dxip(y: |x;, 0,,) p(x) [p(x; [ 0)/p(x;)]
sample x;

~p(a) IT; (1/K) X« [p(xs | 6) / ply)]
Importance Sampling

c MWG:
- p(0, x| {yid, {in}) ~pO 1. p(y: | x;, in) p(x;| 0)



MH algorithm

alylx,)

X, Y

Algorithm 1: Metropolis—Hastings Algorithm

Input: Starting point x1, function f(x), transition kernel function ¢(y|x)
Output: An array of N points x1,x2,...,4Nn

for t=1to N —1do

Obtain a new sample y from ¢ (y|x;) ;

Sample a uniform random variable U ;

if U < ﬁ%ﬁﬁf} then x,11 = y else w41 = x5

end




| Gibbs Sampling

m(x)

q(z5 < x2) = w(z2 | 1)

q(z] < z1) = (1| z2)
——

Image: Ryan Adams



Metropolis Within Gibbs

e Gibbs sampler requires sampling from conditional
distribution.

* Replace this with a MH step.

« Rather than updating all at one time, one can do it one
dimension at a time.

« A complicated distribution can be broken up into sequence of
smaller or easier to samplings is the main strength of this.



BMCMC- a python package

* pip install bmcmc
e https://github.com/sanjibs/bmcmc

» Ability to solve hierarchical Bayesian models.
 Documentation:

- http://bmcmc.readthedocs.io/en/latest/


https://github.com/sanjibs/bmcmc
http://bmcmc.readthedocs.io/en/latest/

class gauss2(bmcmc.Model):
def set descr(self):

# setup descriptor

self.descr['mu’] =['10',0.0,1.0,

self.descr['sigma'] =['l0',1.0,1.0,

self.descr| 'xt'] =['11',0.0,1.0,

"$\mus$’ ,-500,500.0]
"$\sigma$',le-10,1le3]
"$x t$' ,-500.0,500.0]

i e Bl |

def set args(self):
# setup data points
np.random.seed(11)
# generate true coordinates of data points
self.args['x']=np.random.normal(loc=self.eargs['mu'],scale=self.eargs['sigma'],size=self.eargs['dsize’'])
# add observational uncertainty to each data point
self.args['sigma x']=np.zeros(self.args['x"'].size,dtype=np.float64)+0.5
self.args['x"']=np.random.normal(loc=self.args['x"'],scale=self.args['sigma x'],size=self.eargs['dsize'])

def lnfunc(self,args):
# log posterior
templ=scipy.stats.norm. logpdf(args['xt'],loc=args['mu'],scale=args|['sigma'])
temp2=scipy.stats.norm. logpdf(args['x'],loc=args['xt'],scale=args|'sigma x'])
return templ+temp2

Create an object and run the sampler.

>>> mymodel=gauss2(eargs={'dsize':100, 'mu':1.0, 'sigma':2.0})
>>> mymodel.sample([ 'mu’, 'sigma’', 'xt'],50000,ptime=1000)



Why do we need model selection?

Models are designed to explain and understand the data.

In general, we do not know the true model, we build
models to fit the observed data and keep improving them
by adding new features.

More than one competing model or theory

Parameter fitting, the number of parameters not known.



Why do we need model selection
criterion?

* As we Increase the number of parameters the
model will fit the data better and better.



» 10 data points from function y=sin(2mx)+¢ (green)

« fitted by polynomials (red) of degree M.

« What will happen if we add a new point?

Oscillating function like Asin(nx)
can be made to pass through

all data points. It has only two
Parameters.

Bishop book

1t o—0 M=0 - 1 0—0 M=1

-1}

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.



« Polynomial model parameters 6=06(Y,.;,)

* E0,Ye)=(1/N)2i{y(xi0) - yi }2

 For M<3, E is very high, as model too
simple/inflexible/rigid.

« For 3<M<8, not much change, power
series expansion of sin(x) contains
terms of all orders.

« For M=9, E,., =0, 10 dof for 10 data
points, however E, very high.

Test data
4

Prediction error

;

Training data

Model complexity

—&— Training
—6— Test

300

RMSE error

200

100

— Test errors
— Train errors

0 3
Bishop book

2 3 4

Model complexity (Degree of polynomial)




Why do we need model selection
criterion?

* As we Increase the number of parameters the model will fit the
data better and better.

* Given a new data it will perform badly.

- overfitting

- We do not want to overfit the models.
* Cross validation

e Bayesian model comparison has the built in Occams factor that
penalizes more complex models. However, it is not easy to do.



Cross validation

How well will the model work on future data set.
Observed Data set— Training set + Test/Validation set

One test set:

- (70,30), (50,50),Unreliable, wastes too much data

Exhaustive:

- Leave-p-out cv (LPOCV): C(n,p), C(100,30)~3 1025

- Leave-one-out cv (LOOCV): n

- Costly

K-fold cross validation:

- Split into K subsamples, use as validation one of them, repeat k times.

- Cheaper.
- Use k=10, not too expensive does not waste too much data.



Bayesian model comparison
(Bayes Factor)

Bayes factor of model M, wrt M, . Model M, has 0 as a free parameter, while model M, has a
fixed value of 0,for it.

B,, = p(D|M) /p(D|M,)
= [ p(DI6) p(6)d6 / p(D|6,)
= [L(Hmax) AByctinooa’ Aeprior] / L(Qo)
= [L(Omar) / L(60)] [ABrixerinooa” ABprior]

Aelikelihood
i
=
L
p(B)=1/A0
S oL\
emax e
- -

AO
Bishop book Prer



Bayesian model comparison
(Bayes Factor)

*B,,=p(D'|H,)/p(D'|H,)

A simple model H, only makes a limited range of predictions.

» A complex model H, (more free prams) is able to predict a large range of data sets.
*Note, [p(D|H,) d D =1

« Hence, for observed data D', p(D'|H,) < p(D'|H,)

YEvidence
P(DIH)
P(DIH,)
C D

1
MacKay book Horizontal axes: space of all possible data sets



Bayes factor: caveats

« Bayesian Model selection comparison is complicated.
- B,;=p(D|M,)/p(D|M;)
- :[L(emax) / L(HO)] [Aelikelihood/ AHprior]

- For parameter estimation range of priors is not an issue but
for model selection it is.

* In most cases we do not have a reasonable sense of range of
priors.

- What is the prior for the coefficients of a polynomial?

- Computing Bayes factor is computationally challenging.
* p(DIM)=J p(D|8,M)p(B]M) d6

 Likelihood is peaked and confined to a narrow region but has long
tails whose contribution cannot be neglected.



Bayes factor interpretation
Kass & Raftery 1995

2 log.(B)p) (B10) Evidence against H,
Oto 2 1to3 Not worth more than a bare
mention
2t06 3t020 Positive
6 to 10 20 to 150 Strong

>10 >150 Very strong



Information criteria

Y={Y1, Yar s Yol

- In p(Y[8)=In [ [, p(yil6) I= 3, In p(yilB)
AlIC: Akaike 1974

~ -In p(Y|0)+d

- Oct 2014, 14000 cites, 739 most cited

- Frequentist. Based on information theory.

BIC: Schwarz 1978

— -In p(Y|8)+d (In n)/2

- Based on Bayesian model comparison

- An approximation of Bayesian evidence p(D|M).

- Roughly equivalent to model selection based on Bayes Factor.

- Does not require prior, making it useful when priors are difficult to
compute.

Of the form: -(Goodness of fit)+(penalty for model complexity)



Statistical learning

Samples D = {X, X,,..., X }

Random / / St&{tlstl‘?al
' estimation
sampling
Generalization

N error K(q//p™)
N4
AT = L

True ¢(x) Estimated p™(x)

Statistical learning

Watanabe 2009 Book (Algebraic Geometry and Statistical Leraning Theory)



Other information criteria.

BIC/2 = —Inp(Y |6) + (d Inn)/2 (Schwarz et al. 1978) and
|
WBIC/2 = Ef[—In p(Y |0)], where g = — (Watanabe 2013).
n
AIC/2 = —Inp(Y |0) +4d, (Akaike 1974)
DIC1/2 = —In p[V |E}(6)] + 2 {In p[Y |Eg(9)] — Ej[In p(Y |9)]} : (Spiegelhalter et al. 2002)
DIC;/2 =—Inp[Y IE;(G)] + ZVaré [In p(Y"160)], (Spiegelhalter et al. 2002)

WAIC,/2 = — Z InEj[p(yi16)] + 2 Z InEj[p(yi10)] — Ej[In p(y,16)], (Watanabe 2010)

WAIC,;/2 = — Z InEj[p(yi10)] + Z Varp[In p(y;|0)]. (Watanabe 2010)



WAIC and WBIC

* Works for Singular statistical models.
 Makes use of predictive density.

* In the asymptotic limit of large sample size both
AlIC and WAIC

- Equivalent to LOOCV

- Equivalent to expected KL divergence of predicted
distribution from the true distribution.



BIC vs AIC

* First term giving likelihood of data (goodness of
fit) Is same.

* But penalty term for model complexity is more
severe in BIC

- Forn>=8, d (Inn)/2>d
 BIC favors smaller models than AIC.

 Differences will be more pronounced for large
n.



BIC vs AIC/WAIC

« Asymptotically consistent:

- If the candidate list of models contains the true
model, the method will asymptotically select the
true model with probability one.

« Asymptotically efficient:

- The method will asymptotically select the model
that minimizes the mean squared error of
prediction.

* AIC Is asymptotically efficient yet not consistent

* BIC is asymptotically consistent yet not
efficient.

Burnham & Anderson 2002, Lecture by Cavanaugh 2012, Spiegelhalter 2014



BIC vs AIC: practical perspective

* AIC: primary goal of modelling Is predictive
- Build model to fit future data effectively
* BIC: primary goal of modelling Is descriptive

- Build a model with most meaningful factors
iInfluencing outcome based on an aseessment of
relative importance.

* As the sample size grows, predictive accuracy
Improves as subtel effects are admitted to the
model. AIC will increasingly favor the inclusion
of such effects; BIC will not.

Source: Lecture Cavanaugh 2012



Which to choose.

 Both Bayesian and predictive have their
strength and weaknesses.

* |f the model is physical and the choice of priors
Is well justified, then Bayes factor are the best
sulited.

- BIC can also be used, if priors an issue.

 |If model is explanatory and empirical, which
means predictive accuracy for future data is
desired, choose WAIC.



Future



Machine Learning

Image:www.iamwire.com



Output Layer

Hidden Layer 2
Image: https://www.edureka.co
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Bayesian statistics a glue connecting different
fields.

My or your model fitting problem is also everyone
elses problem.

Growth In data science, inference.

- Predictive analysis of great use for industry.
- Confluence of industry and science. (facebook, google).
- autodiff, pytorch, tensorflow

Development of good optimizers.

Platforms for probabilistic inference.
- Stan, Edward, PyMC3



Future

* Big Data
- Tall (N), Wide (d),
- Model: Complexity (d), Hierarchies

« MCMC too slow I

- MLE, optimization
- Speed up traditional MCMC for tall data.
- Hamiltonian Monte Carlo

- Variational Bayes



Bayesian nonparametrics (BNP)

» Useful for big data.

* Properties of big data

- Feature space is large — complex models
- Difficult to find suitable model.



Big data analogy

 More the data, more
substructures and more
hierachy of substructures.

e A flexible model whose
complexity can grow with
data size.

- Polynomials with degree
being free

— Gaussian mixture model
with number of clusters free




BNP

p(x | 6) =Y a, Normal(x |, 02), i={1,...,K}

Put a prior on p(K)
Can do this without Bayesian model comparison.
Dirichlet Process mixture models (Neal 2000).

- Aprior on p(a) K — o




Pseudo marginal MCMC for big data

« Speeding up MCMC for big data.
- Subsample the data and compute the likelihood

- f’(x,y), y set of rows to use

- f'(x,y)=exp[XL ;log f(x,)], foreachiiny
- Likelihood becomes stochastic.

» Other cases of stochastic likelihood.
- Marginalization problems
* p(@|x)=[p(x|ba)da = [ [p(x,z]6, a,z)da dz
- Doubly intractable integrals



Doubly intractable integrals

« Singly intractable integral.

- p@ly) =py10) p(6)/py)
- The normalization constant p(y) (Evidence) is not known.

- But we do not need to know it, to compute expectations.
- We only need to sample from it.

- E[f]1=JA0)p(0|ly) dO=1/N X f(6)

« What if p(y|6) = f(1;,6)/Z(6) ?

- Now expectation is doubly intractable integral.



* p(x[0,5)=p(x|6) S(x) / J p(x]6) S(x) dx

* Fitting stellar halo density for stars in two cones
(SDSS).




Handling stochastic likelihoods

 Monte Carlo Metropolis-Hastings

* IfU < f(x") / f(x):
xl.append(x’)
Else:
xl.append(x)

* What if the function f Is stochastic?



Pseudo Marginal MCMC

* Andrieu and Roberts (2009), Beaumont 2003
Sample auxillary variable y,

IfU<f'(x,v,)/f (x,y):
xl.append(x,)

yl.append(y,)
Else:

xl.append(x)
yl.append(y)

* Does sample f(x) provided f’(x, y) Is unbiased.

- E[lf (%, y) =A%)
* If Var[log f'(x, v,)-log f "(x, y)] > 1, will get stuck.



Approximate MCMC

Murray 2006, Liang 2011, Sharma 2014, Sharma 2017
Sample vy,

If U < £ (%, v)/f (X, )3
xl.append(x,,)

yl.append(y,)
Else:

xl.append(x)
yl.append(y,)

Does not sample f(x), rather f, ...(x)

More stable, does not get stuck.



Pseudo marginal MCMC for big data

Speeding up MCMC for big data.

Subsample the data and compute the likelihood

- f’(x, y), y set of rows to use

- f'(x, y)=exp[ X; log f(x;)], foreachiiny

Unbiased for log(f(x)) but this does not give an unbiased
estimator of f(x).

Bardent 2014, Korattikara 2014, Maclaurin & Adams
2014, Quiroz (2016,2017).



Hamiltonian Monte Carlo
(Duane 1987, Neal 1995)

* When d is large
the typical set is

confined to a |
: Typical
thin shell. Set

m(q) dq

Betancourt 2017
lq - qMDdel



Jump to unexplored areas (like
punching through a wormhole). Betancourt 2017



Hamiltonian Monte Carlo

* H=U(0)+K(u) =-log p(0|x) +u2 /2

* Fori=0,M:
Sample new momentum- .~ N(0O, 1)
Advance- (0, u')=Leaptrog(0, u,)
if U < Min(1,p(6, u')/p(0, u,)) :

(0i+1/ ui+1):(9'/ M')
else:

(9i+1/ ui+1):(9i/ ui)



HMC: caveats

* Need Gradients

- Magic of Automatic differentiation

- Driven by rapid advances in machine learning
* Tuning of stepsize :

- The No-U-Turn-Sampler (NUTS)
e Hoffman & Gelman (2014)

* Solves the high 4 problem.

* What about large N problem?

- Subsampling HMC,
- Possible to do says Dang et al. (2017)

- However, Betancourt 2015 says that it is difficult to do so,
fundamental incompatibility.



Variational Bayes

» Posterior:

* p(0lx)=px|0) p0/pl)
» Approximate posterior by

* q(0] 4

« KL: Kullback-Leibler divergence
KL(g| Ip) = [ q(0] 2) log [q(0] A) Ip(8]x)]
A" = arg min KL(4)

Note p(x) is hard to compute

« ELBO: The Evidence Lower Bound
ELBO(4) = [ g(01 A) log p(6, x) / q(6] A)
log p(x)=KL(4) +ELBO(A)

A= arg max ELBO(A)

log p(x)

KL

ELBO




Variational Bayes

* Reduces from sampling to an optimization problem.

 ADVI:

- Automatic differentiation, Variational inference

- Leveraging advances in ML

- Stan, Edward, (Kucukelbir 2017)

- “Black box inference” just like we had for MCMC

* Works both for large N and 4.



Summary

Hierarchical Bayesian models allow you to tackle a
wide range of problems in astronomy.

_arge N: Bayesian nonparametric modelling.
_arge dim d -Hamiltonian Monte Carlo

_arge N, large d- Variational Bayes.

~or more info and Monte Carlo based algorithms to
solve Bayesian inference problems see, Sharma
2017

Annual Review of Astronomy and Astrophysics

Saniib Sharma



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

