

Testing black holes using X-ray reflection spectroscopy

Cosimo Bambi

Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/

HEP Remote Video Seminar Series @ IIT Hyderabad, 4 October 2018

Contributors

Askar Abdikamalov, Dimitry Ayzenberg, Zheng Cao, Kishalay Choudhury, Thomas Dauser, Javier Garcia, Jiachen Jiang, Honghui Liu, Sourabh Nampalliwar, Ashutosh Tripathi, Jack Steiner, Jingy Wang, Yerong Xu

Motivations

- $1915 \rightarrow$ General relativity (Einstein)
- 1919 → Deflection of light by the Sun (Eddington)
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

- $1915 \rightarrow \text{General relativity (Einstein)}$
- $1919 \rightarrow Deflection of light by the Sun (Eddington)$
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

- $1915 \rightarrow \text{General relativity (Einstein)}$
- 1919 → Deflection of light by the Sun (Eddington)
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

- $1915 \rightarrow \text{General relativity (Einstein)}$
- 1919 → Deflection of light by the Sun (Eddington)
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

• Weak fields

- $1915 \rightarrow \text{General relativity (Einstein)}$
- 1919 → Deflection of light by the Sun (Eddington)
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

• Weak fields

• Today \rightarrow Black holes

- $1915 \rightarrow \text{General relativity (Einstein)}$
- 1919 → Deflection of light by the Sun (Eddington)
- 1960s-present → Solar System experiments
- 1970s-present → Binary pulsars

• Weak fields

• Today → Black holes

Black holes in Einstein's Gravity

- "No-Hair Theorem" \rightarrow M, J, Q ($a_* = J/M^2$)
- Uncharged black holes \rightarrow Kerr solution
- Clear predictions on the particle motion

Astrophysical black holes

The spacetime metric around astrophysical black holes formed from gravitational collapse should be well approximated by the Kerr solution:

- Initial deviations are radiated away by gravitational waves
- Equilibrium electric charge is negligible
- Mass of the accretion disk is negligible

Black hole "candidates"

- Stellar-mass black holes (3 100 Solar masses)
- Supermassive black holes $(10^5 10^{10} \text{ Solar masses})$
- Intermediate-mass black holes $(10^2 10^4 \text{ Solar masses}?)$

Black Hole Binaries in the Milky Way

Figure courtesy of Jerome Orosz

Supermassive BH candidate in the Galaxy

- Orbital motion of individual stars
- Point-like central object with a mass of 4x10⁶ Solar masses
- Radius < 45 AU (600 R_{Sch})

Black holes "candidates" → Dark and compact objects that can be naturally interpreted as the Kerr black holes predicted in General Relativity

We want to observationally test whether the spacetime metric is described by the Kerr solution

Method

Disk-corona model

Disk-corona model

Disk-corona model

Reflection spectrum

- Reflection spectrum at the emission point \rightarrow Atomic physics
- Reflection spectrum far from the source \rightarrow Einstein's gravity

Reflection spectrum

- Reflection spectrum at the emission point \rightarrow Atomic physics
- Reflection spectrum far from the source \rightarrow Einstein's gravity

Model

RELXILL

- RELXILL is currently the most advanced X-ray reflection model for Kerr spacetimes
- Reflection spectrum at the emission point → XILLVER
- Reflection spectrum far from the source (assuming Einstein's gravity)
 → RELXILL ~ RELCOV*XILLVER
- **RELXILL can be employed to measure black hole spins**

Impact of the inclination angle

Impact of the emissivity index

Impact of the spin parameter

Current spin measurements

BH Binary	a_* (continuum)	a_* (iron)	Principal References
GRS 1915-105	> 0.98	0.98 ± 0.01	[21, 23]
Cyg X-1	> 0.98	$0.97\substack{+0.014\\-0.02}$	[12, 13, 8, 25]
LMC X-1	0.92 ± 0.06	$0.97\substack{+0.02\\-0.25}$	[10, 36]
GX 339-4	< 0.9	0.95 ± 0.03	[14, 27, 9]
MAXI J1836-194	_	0.88 ± 0.03	[28]
M33 X-7	0.84 ± 0.05	—	[18]
4U 1543-47	$0.80 \pm 0.10^{\star}$	_	[31]
IC10 X-1	$\gtrsim 0.7$	—	[34]
Swift J1753.5	_	$0.76^{+0.11}_{-0.15}$	[26]
XTE J1650-500	_	$0.84 \sim 0.98$	[37]
GRO J1655-40	$0.70 \pm 0.10^{\star}$	> 0.9	[31, 26]
GS 1124-683	$0.63^{+0.16}_{-0.19}$	_	[4, 24]
XTE J1752-223	_	0.52 ± 0.11	[29]
XTE J1652-453	_	< 0.5	[5]
XTE J1550-564	0.34 ± 0.28	$0.55_{-0.22}^{+0.15}$	[35]
LMC X-3	0.25 ± 0.15		[32]
H1743-322	0.2 ± 0.3	_	[33]
A0620-00	0.12 ± 0.19	—	[11]
XMMU J004243.6	< -0.2	_	[22]

Table 6.1 Summary of the continuum-fitting and iron line measurements of the spin parameter of stellar-mass black hole candidates under the assumption of the Kerr background. See the references in the last column for more details. *These sources were studied in an early work of the continuum-fitting method, within a more simple model, and therefore here the published 1σ error estimates are doubled.

Current spin measurements

AGN	a_* (iron)	$L_{\rm Bol}/L_{\rm Edd}$	Principal References
IRAS 13224-3809	> 0.995	0.71	[36]
Mrk 110	> 0.99	0.16 ± 0.04	[36]
NGC 4051	> 0.99	0.03	[24]
MCG-6-30-15	> 0.98	0.40 ± 0.13	[4, 22]
1H 0707-495	> 0.98	~ 1	[26, 36, 39]
NGC 3783	> 0.98	0.06 ± 0.01	[5, 24]
RBS 1124	> 0.98	0.15	[36]
NGC 1365	$0.97^{+0.01}_{-0.04}$	$0.06^{+0.06}_{-0.04}$	[29, 30, 6]
Swift J0501.9-3239	> 0.96		[36]
Ark 564	$0.96^{+0.01}_{-0.06}$	> 0.11	[36]
3C 120	> 0.95	0.31 ± 0.20	[18]
Ark 120	0.94 ± 0.01	0.04 ± 0.01	[25, 23, 36]
Ton S180	$0.91\substack{+0.02\\-0.09}$	$2.1^{+3.2}_{-1.6}$	[36]
1H 0419-577	> 0.88	1.3 ± 0.4	[36]
Mrk 509	$0.86^{+0.02}_{-0.01}$	_	[36]
IRAS 00521-7054	> 0.84	_	[33]
3C 382	$0.75_{-0.04}^{+0.07}$	_	[36]
Mrk 335	$0.70_{-0.01}^{+0.12}$	0.25 ± 0.07	[25, 36]
Mrk 79	0.7 ± 0.1	0.05 ± 0.01	[9, 10]
Mrk 359	$0.7^{+0.3}_{-0.5}$	0.25	[36]
NGC 7469	0.69 ± 0.09	_	[25]
Swift J2127.4+5654	0.6 ± 0.2	$0.18 \!\pm\! 0.03$	[21, 25]
Mrk 1018	$0.6^{+0.4}_{-0.7}$	0.01	[36]
Mrk 841	> 0.56	0.44	[36]
Fairall 9	$0.52^{+0.19}_{-0.15}$	0.05 ± 0.01	[25, 17, 31, 36]

Table 7.1 Summary of the iron line measurements of the spin parameter of supermassive black hole candidates under the assumption of the Kerr background. See the references in the last column and [3] for more details.

RELXILL_NK

• **RELXILL_NK** is the natural extension of **RELXILL** for non-Kerr spacetimes

 \rightarrow RELXILL_NK ~ RELCOV_NK*XILLVER

- "Deformation parameters"
- **RELXILL_NK** can be employed to test the Kerr black hole hypothesis

How can we test the Kerr nature of astrophysical black holes?

• Top-down approach:

We test a specific alternative theory of gravity against Einstein's gravity Problems:

- 1) A large number of alternative theories...
- 2) We do not have rotating black hole solutions...
- Bottom-up approach:

See PPN formalism

Solar System experiments: Schwarzschild solution in the weak field limit

- Parametrized Post-Newtonian formalism (PPN formalism)
- Weak field limit (M/r << 1)
- Solar System experiments

$$ds^{2} = -\left(1 - \frac{2M}{r} + \beta \frac{2M^{2}}{r^{2}} + \dots\right) dt^{2} + \left(1 + \gamma \frac{2M}{r} + \dots\right) \left(dx^{2} + dy^{2} + dz^{2}\right)$$

$$\begin{split} |\beta - 1| &< 2.3 \cdot 10^{-4} \quad \text{(Lunar Laser Ranging experiment)} \\ |\gamma - 1| &< 2.3 \cdot 10^{-5} \quad \text{(Cassini spacecraft)} \end{split}$$

In general relativity $\beta=\gamma=1$

Johannsen metric [Johannsen, PRD 88, 044002 (2013)]

$$\begin{split} ds^2 &= -\frac{\tilde{\Sigma}(\Delta - a^2A_2^2\sin^2\theta)}{B^2} dt^2 \\ &-\frac{2a[(r^2 + a^2)A_1A_2 - \Delta]\tilde{\Sigma}\sin^2\theta}{B^2} \\ &\times dt \, d\phi + \frac{\tilde{\Sigma}}{\Delta A_5} \, dr^2 + \tilde{\Sigma} \, d\theta^2 \\ &+ \frac{[(r^2 + a^2)^2A_1^2 - a^2\Delta\sin^2\theta]\tilde{\Sigma}\sin^2\theta}{B^2} \, d\phi^2, \end{split}$$

$$B = (r^2 + a^2)A_1 - a^2A_2\sin^2\theta, \quad \tilde{\Sigma} = \Sigma + f,$$

 $\Sigma = r^2 + a^2\cos^2\theta, \quad \Delta = r^2 - 2Mr + a^2,$

$$f = \epsilon_3 \frac{M^3}{r}, \quad A_1 = 1 + \alpha_{13} \left(\frac{M}{r}\right)^3,$$
$$A_2 = 1 + \alpha_{22} \left(\frac{M}{r}\right)^2, \quad A_5 = 1 + \alpha_{52} \left(\frac{M}{r}\right)^2$$

Impact of the deformation parameters (i = 30 deg)

Impact of the deformation parameters (i = 80 deg)

Results

Sources

- 1H0707-495 (Cao et al., PRL 120, 051101, 2018; Zhou et al. PRD 024007, 2018)
- Ark 564 with Suzaku data (Tripathi et al., PRD 98, 023018, 2018)
- GX339-4 with RXTE data (Wang-Ji et al., arXiv:1806.00126)
- GS 1354-645 with NuSTAR (Xu et al., ApJ, 865, 134, 2018)
- Mrk 335 with Suzaku (Choudhury et al., arXiv:1809.06669)
- Cygnus X-1 with NuSTAR data (in preparation)
- MCG-6-30-15 with XMM-Newton+NuSTAR (in preparation)

• ...

1H0707-495: XMM-Newton data of 2011

Cao et al., PRL 120, 051101 (2018)

1H0707-495: NuSTAR+Swift

Cao et al., PRL 120, 051101 (2018)

Ark 564: Suzaku

Tripathi et al., PRD 98, 023018 (2018)

GX 339-4: RXTE

Wang-Ji et al., arXiv:1806.00126

GX 339-4: RXTE

GS 1354: NuSTAR

Xu et al., ApJ 865, 134 (2018)

Conclusions

Last 3 years (2016-2018):

- Astrophysical model (RELXILL_NK, Bambi et al. ApJ 842, 76, 2017)
- Preliminary observational constraints (Cao et al. PRL 120, 051101, 2018 etc. + papers under review or in preparation)

Last 3 years (2016-2018):

- Astrophysical model (RELXILL_NK, Bambi et al. ApJ 842, 76, 2017)
- Preliminary observational constraints (Cao et al. PRL 120, 051101, 2018 etc. + papers under review or in preparation)

Next 5 years (2019-2023):

- Improving the astrophysical model
- Analyzing more data
- Testing new gravity models

Last 3 years (2016-2018):

- Astrophysical model (RELXILL_NK, Bambi et al. ApJ 842, 76, 2017)
- Preliminary observational constraints (Cao et al. PRL 120, 051101, 2018 etc. + papers under review or in preparation)

Next 5 years (2019-2023):

- Improving the astrophysical model
- Analyzing more data
- Testing new gravity models

Last 3 years (2016-2018):

- Astrophysical model (RELXILL_NK, Bambi et al. ApJ 842, 76, 2017)
- Preliminary observational constraints (Cao et al. PRL 120, 051101, 2018 etc. + papers under review or in preparation)

```
Next 5 years (2019-2023):
```

- Improving the astrophysical model
- Analyzing more data
- Testing new gravity models

Last 3 years (2016-2018):

- Astrophysical model (RELXILL_NK, Bambi et al. ApJ 842, 76, 2017)
- Preliminary observational constraints (Cao et al. PRL 120, 051101, 2018 etc. + papers under review or in preparation)

Next 5 years (2019-2023):

- Improving the astrophysical model
- Analyzing more data
- Testing new gravity models

Thank you!

PhD positions at Fudan University

• Fudan University (Shanghai, China)

3rd in China, 44th in the world (QS World University Ranking 2019)

• International PhD students

Application deadline: November 30

Requirements: Master degree before September 2019

Application procedure: CV, at least 2 recommendation letters bambi@fudan.edu.cn

https://hyperspace.uni-frankfurt.de/2018/10/01/phd-positions-inastrophysics-gravity-at-fudan-university-shanghai-china/