On Singularity Resolutions, Evaluations and Reductions of Feynman Integrals

Andreas v. Manteuffel
MICHIGAN STATE
UN I VERS I T Y

IIT Hyderabad HEP Seminar
April 4, 2018

Higgs at $\mathrm{N}^{3} \mathrm{LO}$ and Resummations

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger, Lazopoulos '16]

- plot using approximate $\mathrm{N}^{3} \mathrm{LO}$, important: subleading terms in threshold expansion
- exact N^{3} LO [Mistlberger '18] in excellent agreement (not so much for subleading partonic channels)
- resummation improves convergence of perturbative expansion
- missing for N^{3} LL: cusp anomalous dimension @ 4 loops !

Towards the cusp anomalous dimension @ 4-LOOPS

Cusp anomalous dimension @ 4-loops:

- required for $\mathrm{N}^{3} \mathrm{LL}$ resummation
- Casimir scaling for quark and gluon cusp anomalous dimension:

$$
\Gamma_{4}^{q} \stackrel{?}{=} \frac{C_{F}}{C_{A}} \Gamma_{4}^{g}
$$

- partial results: [Grozin, Henn, Korchemsky, Marquard '15], [Ruijl, Ueda, Vermaseren, Davies, Vogt '16]
- numerical result for cusp in $\mathcal{N}=4$ SYM: [Boels, Hubert, Yang '17]
- (numerical) result for quark cusp: [Moch, Ruijl, Ueda, Vermaseren, Vogt '17]

4-loop form factors:

- $1 / \epsilon^{2}$ poles allow extraction of cusp anomalous dimension
- reduced integrand for $\mathcal{N}=4$ SYM: [Boels, Kniehl, Tarasov, Yang '12, '15]
- leading N_{c} quark F_{4}^{q} : [Henn, Smirnov, Smirnov, Steinhauser, Lee '16, '16]
- n_{f}^{3} quark F_{4}^{q} and gluon F_{4}^{g} : [Manteuffel, Schabinger '16]
- n_{f}^{2} quark F_{4}^{q} : [Lee, Smirnov, Smirnov, Steinhauser, Lee '17]
this talk: QCD form factors via finite integrals and finite fields
(1) basis of finite integrals
(2) reductions via finite fields
(3) first results

Part I: A basis of finite Feynman integrals (singularity resolution and evaluation)

[AvM, Panzer, Schabinger]

Multi-Loop Feynman integrals

$$
I=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \quad a_{i} \in \mathbb{Z}, \quad D_{1}=k_{1}^{2}-m_{1}^{2} \text { etc. }
$$

family of loop integrals:

- fulfill linear relations: integration-by-parts identities
- systematic reduction to master integrals possible
- think of it as linear vector space with some finite basis
- specific basis choices:
- canonical basis for method of differential equations [Henn '13]
- basis of finite integrals for direct integration (analyt., numeric.): this talk

An improved basis for Feynman parameters

consider Feynman parameter representation of multi-loop integral

$$
I=N\left[\prod_{j=1}^{N} \int_{0}^{\infty} \mathrm{d} x_{j} x_{j}^{\nu_{k}-1}\right] \delta\left(1-x_{N}\right) \mathcal{U}^{\nu-(L+1) \frac{d}{2}} \mathcal{F}^{-\nu+L \frac{d}{2}}
$$

where

- $\nu=\sum_{i} \nu_{i}, \nu_{i}$ denotes propagator multiplicity
- \mathcal{U} and \mathcal{F} are Symanzik polynomials in x_{i}
problem:
- can't directly expand in $\epsilon=(4-d) / 2$: divergencies from x_{i} integrations
- no straight-forward analytical or numerical integration
generic approaches to singularity resolution:
(1) sector decomposition [Hepp '66, Binoth, Heinrich '00]
(3) polynomial exponent raising [Bernstein '72, Tkachov '96, Passarino '00]
© analytic regularisation [Panzer '14]
(1) basis of finite Feynman integrals ("dims \& dots") [AvM, Schabinger, Panzer '14]

Sector decomposition

- very established method + codes
- but not always ideal: for example, calculate to $\mathcal{O}(\epsilon)$:

$$
I(\epsilon)=\int_{0}^{1} \mathrm{~d} t t^{-1-\epsilon}(1-t)^{-1-2 \epsilon}{ }_{2} F_{1}(\epsilon, 1-\epsilon ;-\epsilon ; t)
$$

decompose into sectors: split at (arbitrary) $t=1 / 2$, rescale, expand in plus distributions:

$$
\begin{aligned}
& I_{1}(\epsilon)=-\frac{1}{\epsilon}-1+\left(3+\frac{1}{3} \pi^{2}-8 \ln (2)\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& I_{2}(\epsilon)=-\frac{1}{3 \epsilon}+\frac{7}{3}+\left(-7+\frac{1}{3} \pi^{2}+8 \ln (2)\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

result:

$$
I(\epsilon)=-\frac{4}{3 \epsilon}+\frac{4}{3}+\left(-4+\frac{2}{3} \pi^{2}\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right) .
$$

split up of domain introduces spurious terms $\ln (2)$

- can be worse: spurious order 5 polynomial denominators: [AvM, Schabinger, Zhu '13]
- destroys linear reducibility: no analytical integration a la [Brown '08; Panzer '14; Bogner '15]

Analytic Regularisation [Panzer '14]

Euclidean integrals: all subdivergencies from integration boundaries

- check: rescale $x_{j} \rightarrow \lambda x_{j}$ or x_{j} / λ for some $j \in J$
- problematic scaling of integrand for $\lambda \rightarrow 0$ signals divergency
- convergence can be improved by regularising trafo based on partial integration: new integrand

$$
P^{\prime}=-\left.\frac{1}{\omega J(P)} \frac{\partial}{\partial \lambda} \lambda^{-\operatorname{deg}_{J}(P)} P_{J_{\lambda}}\right|_{\lambda \rightarrow 1}
$$

iterate if necessary

- maps original integral to sum of dimensionally shifted integrals with higher powers of propagators (dots)
shortcomings:
- proliferation of terms, ambiguities way out:
- consider full set of master integrals (basis)
- employ integration by parts (IBP) reductions

New proposal for Singularity Resolution [Avm, Panzer, Schabinger '14]

observation: always possible to decompose wrt basis of finite integrals

$-\frac{2(2-3 \epsilon)\left(5-21 \epsilon+14 \epsilon^{2}\right)}{\epsilon^{4}(1-\epsilon)^{2}(2-\epsilon)^{2} q^{2}}$

basis consists of standard Feynman integrals, but

- in shifted dimensions
- with additional dots (propagators taken to higher powers)
- much more compact than old reg. shifts

Practical algorithm for basis construction

given the existence proof, forget about previous construction and just do:

Algorithm: CONSTRUCTION OF FINITE BASIS

- systematic scan for finite integrals with dim-shifts and dots
- IBP + dimensional recurrence for actual basis change

Practical algorithm for basis construction

given the existence proof, forget about previous construction and just do:

Algorithm: CONSTRUCTION OF FINITE BASIS

- systematic scan for finite integrals with dim-shifts and dots
- IBP + dimensional recurrence for actual basis change
remarks:
- computationally expensive part shifted to IBP solver
- efficient, easy to automate
- any dim-shift good, e.g. shifts by [Tarasov '96], [Lee '10]
- see [Bern, Dixon, Kosower '93] for dim-shifted one-loop pentagon

Form factors @ 1-LOOP

- consider one-loop quark and gluon form factors in massless QCD
- integral basis change to finite integrals

dot: squared propagator, subscript: space-time dimension

Form factors @ 1-LOOP

- consider one-loop quark and gluon form factors in massless QCD
- integral basis change to finite integrals

dot: squared propagator, subscript: space-time dimension
- form factors

$$
\begin{array}{ll}
\mathcal{F}_{1}^{q}(\epsilon)=C_{F} \frac{1}{\epsilon^{2}} a_{1} \\
\mathcal{F}_{1}^{g}(\epsilon)=C_{A} \frac{1}{\epsilon^{2}} b_{1} & a_{1}=\frac{-2+\epsilon-2 \epsilon \epsilon^{2}}{1-\epsilon} \\
b_{1}=\frac{-2\left(1-3 \epsilon+2 \epsilon^{2}+\epsilon^{3}\right)}{(1-\epsilon)^{2}}
\end{array}
$$

note: all divergencies explicit

Form factors @ 1-LOOP

- consider one-loop quark and gluon form factors in massless QCD
- integral basis change to finite integrals

dot: squared propagator, subscript: space-time dimension
- form factors

$$
\begin{array}{ll}
\mathcal{F}_{1}^{q}(\epsilon)=C_{F} \frac{1}{\epsilon^{2}} a_{1} \\
\mathcal{F}_{1}^{g}(\epsilon)=C_{A} \frac{1}{\epsilon^{2}} b_{1}
\end{array}
$$

note: all divergencies explicit

- expansion in ϵ

$$
\begin{aligned}
\bigcirc^{(6-2 \epsilon)} & =1+\epsilon+2 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \\
a_{1} & =-2-\epsilon-3 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \\
b_{1} & =-2+2 \epsilon+2 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

- Casimir scaling reflected by $\left.a_{1}\right|_{\epsilon=0}=\left.b_{1}\right|_{\epsilon=0}$

Form factors @ 2-LOOPS: TO FINITE BASIS

$$
(10-2 \epsilon)
$$

$$
\begin{aligned}
& +\frac{1}{\epsilon^{4}} \frac{-16(1+\epsilon)(3-2 \epsilon)(2-3 \epsilon)\left(10-61 \epsilon+102 \epsilon^{2}-44 \epsilon^{3}-8 \epsilon^{4}\right)}{(3-\epsilon)^{2}(2-\epsilon)^{2}(1-\epsilon)^{3}(1-2 \epsilon)(1+2 \epsilon)\left(2-\epsilon-2 \epsilon^{2}\right)} \\
& +\frac{1}{\epsilon} \frac{4(3-4 \epsilon)(1-4 \epsilon)}{(2-\epsilon)(1-\epsilon)(1-2 \epsilon)\left(2-\epsilon-2 \epsilon^{2}\right)}
\end{aligned}
$$

Form factors @ 2-LOOPS

quark form factor

$$
\begin{aligned}
& \mathcal{F}_{2}^{q}(\epsilon)=C_{F}^{2}\left\{\frac { 1 } { \epsilon ^ { 4 } } \left[c_{1}\right.\right. \\
& +C_{F} C_{A}\left\{\frac { 1 } { \epsilon ^ { 4 } } \left[c_{5} \xrightarrow[(8-2 \epsilon)]{(0.2 \epsilon)}+c_{6}\right.\right. \\
& +C_{F} N_{f}\left\{\frac { 1 } { \epsilon ^ { 3 } } \left[c_{8} \ldots .\right.\right.
\end{aligned}
$$

Form factors @ 3-LOOps

- master integrals:
- [Gehrmann, Heinrich, Huber, Studerus '06]
- [Heinrich, Huber, Maître '07]
- [Heinrich, Huber, Kosower, V. Smirnov '09]
- [Lee, A. Smirnov, V. Smirnov '10]
- [Baikov, Chetyrkin, A. Smirnov, V. Smirnov, Steinhauser '09]
- [Lee, V. Smirnov '10] \Leftarrow the only complete weight 8
- [Henn, A. Smirnov, V. Smirnov '14] (diff. eqns.)
- form factors © 3-loops:
- [Baikov, Chetyrkin, A. Smirnov, V. Smirnov, Steinhauser '09]
- [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10, '10]
- recalculation of 3-loop results via finite integrals:
- [AvM, Panzer, Schabinger '15]
- automated setup, fully analytical
- Qgraf [Nogueira]:
* Feynman diagrams
- Reduze 2 [AvM, Studerus]:
\star interferences
\star IBP reductions
\star finite integral finder
\star basis change with dimensional recurrences
- HyperInt [Panzer]:
\star integration of ϵ expanded master integrals

QUARK FORM FACTOR @ 3-LOOPS [AvM, Panzer, Schabinger '15]

Analytical integration @ 4-LOops

[AvM, Panzer, Schabinger '15]

a non-planar 12-line topology @ 4-loops:

- only shallow ϵ expansion needed
- numerical result with Fiesta [A. Smirnov]: straight-forward confirmation
- starts at weight 7, not expected to contribute to cusp anomalous dimension

Numerical evaluations

advantages of (quasi-)finite basis:

- straight-forward to integrate numerically (in principle)
- no cancellation of spurious singularities
- no blow up in number of sectors
- very simple integrands also at high orders in ϵ
experiments with numerical evaluations:
- naive straight-forward implementation possible but not ideal
- better: employ existing sector decomposition programs
- Fiesta [A. Smirnov]
- SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke]
- sector_decomposition [Bogner, Weinzierl]
- used for HH @ NLO [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke '16]
- finite integrals: faster \& more reliable

Numerical performance

[AvM, Schabinger '17]
improvement wrt conventional basis:

finite	time	rel. err.	conventional	time	rel. err.
$(6-2 \epsilon)$			$(4-2 \epsilon)$		
$(6-2 \epsilon)$	128 s	5.12×10^{-6}		3909 s	9.91×10^{-4}
	192 s	2.68×10^{-6}		19025 s	9.38×10^{-5}

timings with Fiesta 4, ϵ expansion through to weight 6

Numerical performance

[AvM, Schabinger '17]
ϵ expansions to high weights feasible:

	weight 6		weight 8	
	time	rel. err.	time	rel. err.
$(6-2 \epsilon)$				
$(6-2 \epsilon)$				

timings with Fiesta 4

Numerical performance

[AvM, Schabinger '17]
basis of finite integrals renders problematic double boxes numerically accessible

finite	time	rel. err.	conventional	time	rel. err.
$(6-2 \epsilon)$					

timings with SecDec 3 in physical region

Part II: A finite field approach to integral reduction

[AvM, Schabinger]

INTEGRATION-BY-PARTS (IBP) IDENTITIES

in dimensional regularisation, integral over total derivative vanishes:

$$
\begin{aligned}
& 0=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{\partial}{\partial k_{i}^{\mu}}\left(k_{j}^{\mu} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right) \\
& 0=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{\partial}{\partial k_{i}^{\mu}}\left(p_{j}^{\mu} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)
\end{aligned}
$$

where p_{j} are external momenta, $a_{i} \in \mathbb{Z}, \quad D_{1}=k_{1}^{2}-m_{1}^{2}$ etc.
integral reduction:

- express arbitrary integral for given problem via few basis integrals
- integration-by-parts (IBP) reductions [Chetyrkin, Tkachov '81]
- public codes: Air [Anastasiou], Fire [Smirnov], Reduze 1 [Studerus], Reduze 2 [AvM, Studerus], LiteRed [Lee]
- possible: exploit structure at algebra level
- here: Laporta's approach

Laporta's algorithm:
(1) index integrals by propagator exponents: $I\left(a_{1}, \ldots, a_{N}\right)$
(2) define ordering (e.g. fewer denominators means simpler)
(3) generate IBPs for explicit values a_{1}, \ldots, a_{N}
(1) results in linear system of equations
(0) solve linear system of equations
major shortcomings of traditional Gauss solvers:

- suffers from intermediate expression swell
- requires large number of auxiliary integrals and equations
- limited possbilities for parallelisation

IBP REDUCTIONS FROM FINITE FIELD SAMPLES

A novel approach to IBPS [AvM, Schabinger '14]
(1) finite field sampling

- set variables to integer numbers
- consider coefficients modulo a prime field \mathbb{Z}_{p}
(2) solve finite field system
(3) reconstruct rational solution from many such samples

IBP REDUCTIONS FROM FINITE FIELD SAMPLES

A NOVEL APPROACH TO IBPS [AvM, Schabinger '14]
(1) finite field sampling

- set variables to integer numbers
- consider coefficients modulo a prime field \mathbb{Z}_{p}
(2) solve finite field system
(3) reconstruct rational solution from many such samples
finite field techniques:
- no intermediate expression swell by construction
- early discard of redundant and auxiliary quantities
- big potential for parallelisation
established in math literature, becomes popular in physics:
- dense solver: [Kauers]
- filtering: Ice [Kant '13]
- tensor reduction: [Heller]
- QCD integrand construction: [Peraro '16]
- symbol algebra: [Dixon, Drummond, Harrington, McLeod, Papathanasiou, Spradlin '16]

Extended Euclidean Algorithm (EEA)

(1) begin with $\left(g_{0}, s_{0}, t_{0}\right)=(a, 1,0)$ and $\left(g_{1}, s_{1}, t_{1}\right)=(b, 0,1)$,
(3) then repeat

$$
\begin{aligned}
q_{i} & =g_{i-1} \text { quotient } g_{i} \\
g_{i+1} & =g_{i-1}-q_{i} g_{i} \\
s_{i+1} & =s_{i-1}-q_{i} s_{i} \\
t_{i+1} & =t_{i-1}-q_{i} t_{i}
\end{aligned}
$$

(3) until $g_{k+1}=0$ for some k. at that point:

$$
s_{k} a+t_{k} b=g_{k}=\operatorname{GCD}(a, b)
$$

restrict first to linear systems with rational numbers coefficients

- use EEA to define inverse of integer b modulo m with $\operatorname{GCD}(m, b)=1$:

$$
\begin{aligned}
1 & =s m+t b \\
\Rightarrow 1 / b & :=t \bmod m
\end{aligned}
$$

this gives us a canonical homomorphism ϕ_{m} of \mathbb{Q} onto \mathbb{Z}_{m} with

$$
\phi_{m}(a / b)=\phi_{m}(a) \phi_{m}(1 / b)
$$

- for large enough m, the map ϕ_{m} can be inverted!
given a finite field image of a / b modulo m for $m>2 \max \left(a^{2}, b^{2}\right)$,
a unique rational reconstruction is possible:

Rational Reconstruction [Wang '81; Wang, Guy, Davenport '82]

to reconstruct a / b from its finite field image $u=a / b \bmod m$:

- run EEA for u and m
- stop at first g_{j} with $\left|g_{j}\right| \leq\lfloor\sqrt{m / 2}\rfloor$
- the unique solution is $a / b=g_{j} / t_{j}$
important details:
- since we don't know bound on m :
veto $\left|t_{j}\right|>\lfloor\sqrt{m / 2}\rfloor$ and $\operatorname{GCD}\left(t_{j}, g_{j}\right) \neq 1$ reconstructions, see e.g. [Monagan '04]
- construct large m with Chinese Remaindering:
construct solution modulo $m=p_{1} \cdots p_{N}$ from solutions modulo machine-sized primes p_{i}

A fast rational solver

INPUT: $\boldsymbol{I}_{\mathbb{Q}}$ unreduced rational matrix output: $O_{\mathbb{Q}}$ row reduced rational matrix

Function reconstruction

univariate rational function $\mathbb{Q}[d]$ reconstruction:

- works similar to the case \mathbb{Q}
- Chinese remaindering becomes Lagrange polynomial interpolation:

$$
p_{1} \cdots p_{N} \rightarrow\left(d-p_{1}\right) \cdots\left(d-p_{N}\right)
$$

- rational reconstruction becomes Pade approximation:
interpolating polynomial \rightarrow rational function
multivariate rational function $\mathbb{Q}[d, s, t, \ldots]$ reconstruction:
- by iteration

A fast univariate solver

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers

univariate solver: reduce matrix $\mathbb{I}_{\mathbb{Q}[x]}$ of rational functions in x

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers
univariate solver: reduce matrix $I_{\mathbb{Q}[x]}$ of rational functions in x
aux solver: reduce matrix $\mathbb{I}_{\mathbb{Z}_{p}[x]}$ of polynomials in x with finite field coefficients

$$
\begin{array}{ccccccc}
I_{\mathbb{Z}_{p}}[x] \\
& \begin{array}{ccc}
\text { by number } x_{i}
\end{array} & I_{\mathbb{Z}_{p}, x_{1}} & \xrightarrow[\text { reduction }]{\text { sample } x} & O_{\mathbb{Z}_{p}, x_{1}} & \underset{\text { interpolation }}{\text { polynomial }} & O_{\mathbb{Z}_{p}[x]}
\end{array} \begin{gathered}
\text { reconstruction }
\end{gathered} O_{\mathbb{Z}_{p}[x]}^{\text {rational function }}
$$

note: massively parallisable

Package: finred
Author: Andreas v. Manteuffel
features:

- C++11 implementation for univariate sparse matrices
- employs flint library
- parallelisation: SIMD, threads, MPI, batch
- equation filtering: eliminate redundant rows
- plus lots of IBP specific features
- much faster than Reduze 2

Part III: Results for four-loop form factors

[AvM, Schabinger]

Results for massless QCD @ 4 Loops

[AvM, Schabinger '16]
completed:

- N_{f}^{3} for quarks and gluons (three massless quark loops)
- complexity: 12 denominators, 6 numerators, non-planar, $O\left(10^{8}\right)$ eqs. per sector
- master integrals: d dimensional solutions via ${ }_{p} F_{q}$ and Γ functions
checks:
- reductions verified against at least 5 independent samples
- calculation performed in different gauges
- general R_{ξ} gauge, general external polarisation vectors
- background field gauge
result independent of these choices
- two independent diagram evaluations:
- Qgraf + Mathematica
- Qgraf + Form
- poles through to $1 / \epsilon^{3}$ [Moch, Vermaseren, Vogt '05] reproduced
remarks:
- general R_{ξ} gauge introduces many dots

QCD RESULT @ 4-LOOps FOR QUARkS

[AvM, Schabinger '16]

bare quark form factor

$$
\begin{aligned}
\left.\mathcal{F}_{4}^{q}\right|_{N_{f}^{3}}=C_{F}\left[\frac{1}{\epsilon^{5}}\right. & \left(\frac{1}{27}\right)+\frac{1}{\epsilon^{4}}\left(\frac{11}{27}\right)+\frac{1}{\epsilon^{3}}\left(\frac{4}{9} \zeta_{2}+\frac{254}{81}\right)+\frac{1}{\epsilon^{2}}\left(-\frac{26}{27} \zeta_{3}+\frac{44}{9} \zeta_{2}+\frac{29023}{1458}\right) \\
& +\frac{1}{\epsilon}\left(\frac{23}{3} \zeta_{4}-\frac{286}{27} \zeta_{3}+\frac{1016}{27} \zeta_{2}+\frac{331889}{2916}\right)-\frac{146}{9} \zeta_{5}-\frac{104}{9} \zeta_{2} \zeta_{3}+\frac{253}{3} \zeta_{4} \\
& \left.-\frac{6604}{81} \zeta_{3}+\frac{58046}{243} \zeta_{2}+\frac{10739263}{17496}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

cusp anomalous dimension:

$$
\left.\Gamma_{4}^{q}\right|_{N_{f}^{3}}=C_{F}\left[\frac{64}{27} \zeta_{3}-\frac{32}{81}\right]
$$

agrees with [Grozin, Henn, Korchemsky, Marquard '15], [Henn, Smirnov, Smirnov, Steinhauser '16]

First QCD Result @ 4-Loops For gluons

[AvM, Schabinger '16]

BARE GLUON FORM FACTOR

$$
\begin{aligned}
\left.\mathcal{F}_{4}^{g}\right|_{N_{f}^{3}}=C_{F}[& -\frac{2}{3 \epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(\frac{32}{3} \zeta_{3}-\frac{145}{9}\right)+\frac{1}{\epsilon}\left(\frac{352}{45} \zeta_{2}^{2}+\frac{1040}{9} \zeta_{3}+\frac{68}{9} \zeta_{2}-\frac{10003}{54}\right) \\
& \left.+\frac{4288}{27} \zeta_{5}-64 \zeta_{3} \zeta_{2}+\frac{2288}{27} \zeta_{2}^{2}+\frac{24812}{27} \zeta_{3}+\frac{3074}{27} \zeta_{2}-\frac{508069}{324}+\mathcal{O}(\epsilon)\right] \\
+C_{A}[& \frac{1}{27 \epsilon^{5}}+\frac{5}{27 \epsilon^{4}}+\frac{1}{\epsilon^{3}}\left(-\frac{14}{27} \zeta_{2}-\frac{55}{81}\right)+\frac{1}{\epsilon^{2}}\left(-\frac{586}{81} \zeta_{3}-\frac{70}{27} \zeta_{2}-\frac{24167}{1458}\right) \\
& +\frac{1}{\epsilon}\left(-\frac{802}{135} \zeta_{2}^{2}-\frac{5450}{81} \zeta_{3}-\frac{262}{81} \zeta_{2}-\frac{465631}{2916}\right)-\frac{14474}{135} \zeta_{5}+\frac{4556}{81} \zeta_{3} \zeta_{2} \\
& \left.-\frac{1418}{27} \zeta_{2}^{2}-\frac{99890}{243} \zeta_{3}+\frac{38489}{729} \zeta_{2}-\frac{20832641}{17496}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

gluon cusp anomalous dimension:

$$
\left.\Gamma_{4}^{g}\right|_{N_{f}^{3}}=C_{A}\left[\frac{64}{27} \zeta_{3}-\frac{32}{81}\right]
$$

- respects Casimir scaling
- non-planar C_{F} pieces do not contribute to $\left.\Gamma_{4}^{g}\right|_{N_{f}^{3}}$

Conclusions

basis of finite integrals:

- simple and efficient method for singularity resolution in multi-loop integrals
- analytical integrations: finite integrals are Feynman integrals (dim-shifted, dotted)
- numerical integrations: faster and more stable evaluations (also see HH, Hj !)
reductions via finite field sampling:
- speeds up integration-by-parts reductions
- useful also in other contexts
four-loop form factors:
- warmup: N_{f}^{3} contributions to quark and gluon form factor
- more to come soon

